Jurisprudence search based on facts similarity using NLP and ML techniques.

Detalhes bibliográficos
Autor(a) principal: Ruiz, Rodrigo Amorim
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-14022022-122906/
Resumo: Part of a lawyers job is to understand the clients problem, to textually describe its facts and to apply the sources of law. To support a new legal case, a handful of past judgments on similar cases are typically employed by the lawyers, but finding them is currently a time-consuming procedure. To address this problem, we built a machine learning model responsible for classifying similarity between two facts descriptions. This similarity metric measures how much (from 0 to 1) a legal decision may be used to support another. We trained different model architectures combining several state-of-the-art natural language processing and machine learning techniques using an extracted dataset from the Superior Court of Justice website of past judgments, which enabled the dynamic construction of facts description pairs when one case cites another as a reference. The final best architecture employs TF-IDF for encoding and reducing dimensionality of our input documents, a Siamese Neural Network (SNN) with a Multilayer Perceptron (MLP) for feature extraction and a final layer, another MLP, responsible for concatenating and classifying the features into the similarity metric, achieving 85.98% accuracy, 83.89% precision and 89.06% recall. Such a model would enable the lawyer to compare a case facts description with several judgments of the jurisprudence and start their search on the most similar ones.
id USP_d6b5f1a36a0c9261e99fc31cd85e0ee2
oai_identifier_str oai:teses.usp.br:tde-14022022-122906
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Jurisprudence search based on facts similarity using NLP and ML techniques.Pesquisa de jurisprudência baseada na semelhança de fatos usando técnicas de PNL e ML.Aprendizado computacionalArtificial intelligenceBag-of wordsCosine similarityDeep learningFastTextGloVeInteligência artificialJurisprudenceJurisprudênciaLinguagem NaturalLogistic regressionLong short-term memoryMachine learningMultilayer perceptronNaive bayesNatural language processingNeural networkRedes neuraisSiamese neural networkTF-IDFTransfer learningTransformerWord embeddingWord2VecPart of a lawyers job is to understand the clients problem, to textually describe its facts and to apply the sources of law. To support a new legal case, a handful of past judgments on similar cases are typically employed by the lawyers, but finding them is currently a time-consuming procedure. To address this problem, we built a machine learning model responsible for classifying similarity between two facts descriptions. This similarity metric measures how much (from 0 to 1) a legal decision may be used to support another. We trained different model architectures combining several state-of-the-art natural language processing and machine learning techniques using an extracted dataset from the Superior Court of Justice website of past judgments, which enabled the dynamic construction of facts description pairs when one case cites another as a reference. The final best architecture employs TF-IDF for encoding and reducing dimensionality of our input documents, a Siamese Neural Network (SNN) with a Multilayer Perceptron (MLP) for feature extraction and a final layer, another MLP, responsible for concatenating and classifying the features into the similarity metric, achieving 85.98% accuracy, 83.89% precision and 89.06% recall. Such a model would enable the lawyer to compare a case facts description with several judgments of the jurisprudence and start their search on the most similar ones.Parte do trabalho de um advogado é entender o problema do cliente, descrever textualmente seus fatos e aplicar as fontes da lei. Para apoiar um novo processo legal, uma série de julgamentos anteriores em casos semelhantes são normalmente empregados pelos advogados, mas encontrá-los é atualmente um procedimento que demanda tempo. Para resolver esse problema, construímos um modelo de aprendizado de máquina responsável por classificar a similaridade entre as descrições de dois fatos. Essa métrica de similaridade mede quanto (de 0 a 1) uma decisão legal pode ser usada para apoiar outra. Treinamos diferentes arquiteturas combinando várias técnicas de processamento de linguagem natural e aprendizado de máquina do estado da arte usando um conjunto de dados extraído do site do Superior Tribunal de Justiça de julgamentos anteriores, o que possibilitou a construção dinâmica de pares de descrição de fatos quando um caso cita outro como referência. A melhor arquitetura final emprega TF-IDF para codificar e reduzir a dimensionalidade dos documentos de entrada, uma Rede Neural Siamesa (SNN) com um Multilayer Perceptron (MLP) para extração de \"features\" e uma camada final, outro MLP, responsável por concatenar e classificar essas \"features\" na métrica de similaridade, alcançando 85,98% de acurácia, 83,89% de precisão e 89,06% de sensibilidade. Tal modelo permitiria ao advogado comparar a descrição dos fatos de um caso com vários julgamentos da jurisprudência e iniciar sua busca pelos mais semelhantes.Biblioteca Digitais de Teses e Dissertações da USPBona, Glauber DeRuiz, Rodrigo Amorim2021-08-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-14022022-122906/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:07Zoai:teses.usp.br:tde-14022022-122906Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Jurisprudence search based on facts similarity using NLP and ML techniques.
Pesquisa de jurisprudência baseada na semelhança de fatos usando técnicas de PNL e ML.
title Jurisprudence search based on facts similarity using NLP and ML techniques.
spellingShingle Jurisprudence search based on facts similarity using NLP and ML techniques.
Ruiz, Rodrigo Amorim
Aprendizado computacional
Artificial intelligence
Bag-of words
Cosine similarity
Deep learning
FastText
GloVe
Inteligência artificial
Jurisprudence
Jurisprudência
Linguagem Natural
Logistic regression
Long short-term memory
Machine learning
Multilayer perceptron
Naive bayes
Natural language processing
Neural network
Redes neurais
Siamese neural network
TF-IDF
Transfer learning
Transformer
Word embedding
Word2Vec
title_short Jurisprudence search based on facts similarity using NLP and ML techniques.
title_full Jurisprudence search based on facts similarity using NLP and ML techniques.
title_fullStr Jurisprudence search based on facts similarity using NLP and ML techniques.
title_full_unstemmed Jurisprudence search based on facts similarity using NLP and ML techniques.
title_sort Jurisprudence search based on facts similarity using NLP and ML techniques.
author Ruiz, Rodrigo Amorim
author_facet Ruiz, Rodrigo Amorim
author_role author
dc.contributor.none.fl_str_mv Bona, Glauber De
dc.contributor.author.fl_str_mv Ruiz, Rodrigo Amorim
dc.subject.por.fl_str_mv Aprendizado computacional
Artificial intelligence
Bag-of words
Cosine similarity
Deep learning
FastText
GloVe
Inteligência artificial
Jurisprudence
Jurisprudência
Linguagem Natural
Logistic regression
Long short-term memory
Machine learning
Multilayer perceptron
Naive bayes
Natural language processing
Neural network
Redes neurais
Siamese neural network
TF-IDF
Transfer learning
Transformer
Word embedding
Word2Vec
topic Aprendizado computacional
Artificial intelligence
Bag-of words
Cosine similarity
Deep learning
FastText
GloVe
Inteligência artificial
Jurisprudence
Jurisprudência
Linguagem Natural
Logistic regression
Long short-term memory
Machine learning
Multilayer perceptron
Naive bayes
Natural language processing
Neural network
Redes neurais
Siamese neural network
TF-IDF
Transfer learning
Transformer
Word embedding
Word2Vec
description Part of a lawyers job is to understand the clients problem, to textually describe its facts and to apply the sources of law. To support a new legal case, a handful of past judgments on similar cases are typically employed by the lawyers, but finding them is currently a time-consuming procedure. To address this problem, we built a machine learning model responsible for classifying similarity between two facts descriptions. This similarity metric measures how much (from 0 to 1) a legal decision may be used to support another. We trained different model architectures combining several state-of-the-art natural language processing and machine learning techniques using an extracted dataset from the Superior Court of Justice website of past judgments, which enabled the dynamic construction of facts description pairs when one case cites another as a reference. The final best architecture employs TF-IDF for encoding and reducing dimensionality of our input documents, a Siamese Neural Network (SNN) with a Multilayer Perceptron (MLP) for feature extraction and a final layer, another MLP, responsible for concatenating and classifying the features into the similarity metric, achieving 85.98% accuracy, 83.89% precision and 89.06% recall. Such a model would enable the lawyer to compare a case facts description with several judgments of the jurisprudence and start their search on the most similar ones.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3141/tde-14022022-122906/
url https://www.teses.usp.br/teses/disponiveis/3/3141/tde-14022022-122906/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256508315729920