Correlations and topology in hybrid graphene-based devices

Detalhes bibliográficos
Autor(a) principal: Manesco, Antonio Lucas Rigotti
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/
Resumo: Graphene is a two-dimensional carbon allotrope with a honeycomb crystal structure in which electronic excitations behave as massless Dirac particles. The absence of an effective mass makes graphene a gapless material with outstanding electronic properties. Paradigmatic works, such as Haldane and Kane-Mele models, show that certain mass terms in honeycomb materials lead to topologically non-trivial phases. However this masses are inexistent or nearly negligible in free-standing graphene. In this thesis, we follow a diferente approach: we investigate topological phases in graphene driven by electronic correations. In the first part, we explore the emergence of Majorana zero modes when superconductivity is induced by proximity effect at the canted-antiferromagnetic quantum Hall edge states.We derive a low-energy theory for the Majorana end states combining bundary conditions for normal and Andreev reflections. The two-band nature of this system motivated us to extend the classification of one-dimensional topological superconductors to multiband systems. We finally investigate the current status of state-of-art experiments on proximitized quantum Hall graphene and explore possible mechanisms for the propagation of Andreev edge states at the normal/superconductor interface. Or results show that the recently reported interference of chiral Andreev edge states is due to disorder at the interface. Furthermore, we point out necessary improvements to achieve the topological regime. The second part of this thesis is devoted to study electronic correlations in buckled graphene superlattices reported in a recent experiment. The buckling transition occurs when the structure relaxes under in-plane strain. From the low-energy perspective, electrons experience strain similarly to a pseudo-magnetic field. This field leads to the formation of pseudo-Landau levels, resulting in a bandwidth quench and an increase of the density of states at half-filling. Thus, the effects of electron-electron interactions are enhanced, and correlated phases take place. We prove the existence of a modulated ferrimagnetic superlattice from Hubbard calculations and show the possibility of electric tunability of correlations. Moreover, we develop a low-energy theory for this system and explore the effects of long-range interactions, showing the existance of a competing charge density wave phase. Finally, we show that both correlated phases present quantum valley Hall insulator regimes, proposing buckled graphene superlattices as a platform for correlation-driven valley topology.
id USP_d823d55a80311e6b49bebb202d93f56f
oai_identifier_str oai:teses.usp.br:tde-04052022-112041
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Correlations and topology in hybrid graphene-based devicesCorrelações e topologia em dispositivos híbridos baseados em grafenoAndreev reflectionscorrelações eletrônicaselectronic correlationsfases topológicasgrafenographenereflexões de Andreevsuperconductivitysupercondutividadetopological phasesGraphene is a two-dimensional carbon allotrope with a honeycomb crystal structure in which electronic excitations behave as massless Dirac particles. The absence of an effective mass makes graphene a gapless material with outstanding electronic properties. Paradigmatic works, such as Haldane and Kane-Mele models, show that certain mass terms in honeycomb materials lead to topologically non-trivial phases. However this masses are inexistent or nearly negligible in free-standing graphene. In this thesis, we follow a diferente approach: we investigate topological phases in graphene driven by electronic correations. In the first part, we explore the emergence of Majorana zero modes when superconductivity is induced by proximity effect at the canted-antiferromagnetic quantum Hall edge states.We derive a low-energy theory for the Majorana end states combining bundary conditions for normal and Andreev reflections. The two-band nature of this system motivated us to extend the classification of one-dimensional topological superconductors to multiband systems. We finally investigate the current status of state-of-art experiments on proximitized quantum Hall graphene and explore possible mechanisms for the propagation of Andreev edge states at the normal/superconductor interface. Or results show that the recently reported interference of chiral Andreev edge states is due to disorder at the interface. Furthermore, we point out necessary improvements to achieve the topological regime. The second part of this thesis is devoted to study electronic correlations in buckled graphene superlattices reported in a recent experiment. The buckling transition occurs when the structure relaxes under in-plane strain. From the low-energy perspective, electrons experience strain similarly to a pseudo-magnetic field. This field leads to the formation of pseudo-Landau levels, resulting in a bandwidth quench and an increase of the density of states at half-filling. Thus, the effects of electron-electron interactions are enhanced, and correlated phases take place. We prove the existence of a modulated ferrimagnetic superlattice from Hubbard calculations and show the possibility of electric tunability of correlations. Moreover, we develop a low-energy theory for this system and explore the effects of long-range interactions, showing the existance of a competing charge density wave phase. Finally, we show that both correlated phases present quantum valley Hall insulator regimes, proposing buckled graphene superlattices as a platform for correlation-driven valley topology.Grafeno é um alotropo do carbono bidimensional com uma estrutura cristalina favo-de-mel em que as excitações eletrônicas se comportam como partículas de Dirac sem massa. A ausência de uma massa efetiva faz do grafeno um material sem gap e resulta em propriedades eletrônicas excepcionais. Trabalhos paradigmáticos, como os modelos de Haldane e de Kane-Mele, mostram que certos termos de massa levam a fases topologicamente não-triviais em materiais favo-de-mel. Contudo, tais massas são inexistentes ou desprezíveis em folhas de grafeno isoladas. Nessa tese, nós seguimos outra abordagem: nós investigamos fases topológicas em grafeno resultantes de correlações eletrônicas. Na primeira parte, nós exploramos a emergência de modos de Majorana com energia zero quando supercondutividade é induzida por efeito de proximidade nos estados de borda com antiferromagnetismo não-colinear. Nós derivamos uma teoria de baixas energias para os estados de Majorana combinando condições de contorno de reflexões normais e de Andreev. A natureza de duas bandas desse sistema nos motivou a extender a classificação de de supercondutores topológicos unidimensionais para sistemas multibandas. Nós finalmente investigamos experimentos no estado-da-arte em grafeno no estado Hall quântico em proximidade com um supercondutor e exploramos os possíveis mecanismospara a propagação de estados de Andreev na interface normal/supercondutor. Nossos resultados mostram que a interferência de estados de Andreev recentemente reportada ocorre por disordem na interface. Além disso, nós apontamos melhoras necessárias para alcançar o regime topológico. A segunda parte dessa tese é dedicada ao estudo de correlações eletrônicas em superedes de grafeno flambadas. A flambagem acontece por conta da relaxação da estrutura resultante da aplicação de tensão no plano do material. Por uma perspectiva de baixas energias, elétrons sentem a aplicação de um campo pseudo-magnético. Esse campo leva a formação de níveis de pseudo-Landau, levando a uma diminuição da largura de banda e aumento da densidade de estados no ponto de neutralidade de carga. Com isso, as interações elétronelétron aumentam, e fases correlacionadas aparecem. Nós provamos, usando o modelo de Hubbard, a existência de ferrimagnetismo modulado numa superrede e mostramos o controle elétrico das correlações eletrônicas. Ademais, nós desenvolvemos uma teoria de baixas energias para esse sistema e exploramos os efeitos de interações de longo alcance, mostrando uma fase charge density wave concorrente. Finalmente, nós mostramos que as duas fases correlacionadas apresentam regimes de isolante Hall quântico de vale, propondo superredes flambadas de grafeno como plataformas para topologia de vale resultante de correlações eletrônicas.Biblioteca Digitais de Teses e Dissertações da USPMartins, Gabrielle WeberRodrigues Junior, DurvalManesco, Antonio Lucas Rigotti2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-04052022-112041Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Correlations and topology in hybrid graphene-based devices
Correlações e topologia em dispositivos híbridos baseados em grafeno
title Correlations and topology in hybrid graphene-based devices
spellingShingle Correlations and topology in hybrid graphene-based devices
Manesco, Antonio Lucas Rigotti
Andreev reflections
correlações eletrônicas
electronic correlations
fases topológicas
grafeno
graphene
reflexões de Andreev
superconductivity
supercondutividade
topological phases
title_short Correlations and topology in hybrid graphene-based devices
title_full Correlations and topology in hybrid graphene-based devices
title_fullStr Correlations and topology in hybrid graphene-based devices
title_full_unstemmed Correlations and topology in hybrid graphene-based devices
title_sort Correlations and topology in hybrid graphene-based devices
author Manesco, Antonio Lucas Rigotti
author_facet Manesco, Antonio Lucas Rigotti
author_role author
dc.contributor.none.fl_str_mv Martins, Gabrielle Weber
Rodrigues Junior, Durval
dc.contributor.author.fl_str_mv Manesco, Antonio Lucas Rigotti
dc.subject.por.fl_str_mv Andreev reflections
correlações eletrônicas
electronic correlations
fases topológicas
grafeno
graphene
reflexões de Andreev
superconductivity
supercondutividade
topological phases
topic Andreev reflections
correlações eletrônicas
electronic correlations
fases topológicas
grafeno
graphene
reflexões de Andreev
superconductivity
supercondutividade
topological phases
description Graphene is a two-dimensional carbon allotrope with a honeycomb crystal structure in which electronic excitations behave as massless Dirac particles. The absence of an effective mass makes graphene a gapless material with outstanding electronic properties. Paradigmatic works, such as Haldane and Kane-Mele models, show that certain mass terms in honeycomb materials lead to topologically non-trivial phases. However this masses are inexistent or nearly negligible in free-standing graphene. In this thesis, we follow a diferente approach: we investigate topological phases in graphene driven by electronic correations. In the first part, we explore the emergence of Majorana zero modes when superconductivity is induced by proximity effect at the canted-antiferromagnetic quantum Hall edge states.We derive a low-energy theory for the Majorana end states combining bundary conditions for normal and Andreev reflections. The two-band nature of this system motivated us to extend the classification of one-dimensional topological superconductors to multiband systems. We finally investigate the current status of state-of-art experiments on proximitized quantum Hall graphene and explore possible mechanisms for the propagation of Andreev edge states at the normal/superconductor interface. Or results show that the recently reported interference of chiral Andreev edge states is due to disorder at the interface. Furthermore, we point out necessary improvements to achieve the topological regime. The second part of this thesis is devoted to study electronic correlations in buckled graphene superlattices reported in a recent experiment. The buckling transition occurs when the structure relaxes under in-plane strain. From the low-energy perspective, electrons experience strain similarly to a pseudo-magnetic field. This field leads to the formation of pseudo-Landau levels, resulting in a bandwidth quench and an increase of the density of states at half-filling. Thus, the effects of electron-electron interactions are enhanced, and correlated phases take place. We prove the existence of a modulated ferrimagnetic superlattice from Hubbard calculations and show the possibility of electric tunability of correlations. Moreover, we develop a low-energy theory for this system and explore the effects of long-range interactions, showing the existance of a competing charge density wave phase. Finally, we show that both correlated phases present quantum valley Hall insulator regimes, proposing buckled graphene superlattices as a platform for correlation-driven valley topology.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/
url https://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256486820970496