Correlations and topology in hybrid graphene-based devices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/ |
Resumo: | Graphene is a two-dimensional carbon allotrope with a honeycomb crystal structure in which electronic excitations behave as massless Dirac particles. The absence of an effective mass makes graphene a gapless material with outstanding electronic properties. Paradigmatic works, such as Haldane and Kane-Mele models, show that certain mass terms in honeycomb materials lead to topologically non-trivial phases. However this masses are inexistent or nearly negligible in free-standing graphene. In this thesis, we follow a diferente approach: we investigate topological phases in graphene driven by electronic correations. In the first part, we explore the emergence of Majorana zero modes when superconductivity is induced by proximity effect at the canted-antiferromagnetic quantum Hall edge states.We derive a low-energy theory for the Majorana end states combining bundary conditions for normal and Andreev reflections. The two-band nature of this system motivated us to extend the classification of one-dimensional topological superconductors to multiband systems. We finally investigate the current status of state-of-art experiments on proximitized quantum Hall graphene and explore possible mechanisms for the propagation of Andreev edge states at the normal/superconductor interface. Or results show that the recently reported interference of chiral Andreev edge states is due to disorder at the interface. Furthermore, we point out necessary improvements to achieve the topological regime. The second part of this thesis is devoted to study electronic correlations in buckled graphene superlattices reported in a recent experiment. The buckling transition occurs when the structure relaxes under in-plane strain. From the low-energy perspective, electrons experience strain similarly to a pseudo-magnetic field. This field leads to the formation of pseudo-Landau levels, resulting in a bandwidth quench and an increase of the density of states at half-filling. Thus, the effects of electron-electron interactions are enhanced, and correlated phases take place. We prove the existence of a modulated ferrimagnetic superlattice from Hubbard calculations and show the possibility of electric tunability of correlations. Moreover, we develop a low-energy theory for this system and explore the effects of long-range interactions, showing the existance of a competing charge density wave phase. Finally, we show that both correlated phases present quantum valley Hall insulator regimes, proposing buckled graphene superlattices as a platform for correlation-driven valley topology. |
id |
USP_d823d55a80311e6b49bebb202d93f56f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04052022-112041 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Correlations and topology in hybrid graphene-based devicesCorrelações e topologia em dispositivos híbridos baseados em grafenoAndreev reflectionscorrelações eletrônicaselectronic correlationsfases topológicasgrafenographenereflexões de Andreevsuperconductivitysupercondutividadetopological phasesGraphene is a two-dimensional carbon allotrope with a honeycomb crystal structure in which electronic excitations behave as massless Dirac particles. The absence of an effective mass makes graphene a gapless material with outstanding electronic properties. Paradigmatic works, such as Haldane and Kane-Mele models, show that certain mass terms in honeycomb materials lead to topologically non-trivial phases. However this masses are inexistent or nearly negligible in free-standing graphene. In this thesis, we follow a diferente approach: we investigate topological phases in graphene driven by electronic correations. In the first part, we explore the emergence of Majorana zero modes when superconductivity is induced by proximity effect at the canted-antiferromagnetic quantum Hall edge states.We derive a low-energy theory for the Majorana end states combining bundary conditions for normal and Andreev reflections. The two-band nature of this system motivated us to extend the classification of one-dimensional topological superconductors to multiband systems. We finally investigate the current status of state-of-art experiments on proximitized quantum Hall graphene and explore possible mechanisms for the propagation of Andreev edge states at the normal/superconductor interface. Or results show that the recently reported interference of chiral Andreev edge states is due to disorder at the interface. Furthermore, we point out necessary improvements to achieve the topological regime. The second part of this thesis is devoted to study electronic correlations in buckled graphene superlattices reported in a recent experiment. The buckling transition occurs when the structure relaxes under in-plane strain. From the low-energy perspective, electrons experience strain similarly to a pseudo-magnetic field. This field leads to the formation of pseudo-Landau levels, resulting in a bandwidth quench and an increase of the density of states at half-filling. Thus, the effects of electron-electron interactions are enhanced, and correlated phases take place. We prove the existence of a modulated ferrimagnetic superlattice from Hubbard calculations and show the possibility of electric tunability of correlations. Moreover, we develop a low-energy theory for this system and explore the effects of long-range interactions, showing the existance of a competing charge density wave phase. Finally, we show that both correlated phases present quantum valley Hall insulator regimes, proposing buckled graphene superlattices as a platform for correlation-driven valley topology.Grafeno é um alotropo do carbono bidimensional com uma estrutura cristalina favo-de-mel em que as excitações eletrônicas se comportam como partículas de Dirac sem massa. A ausência de uma massa efetiva faz do grafeno um material sem gap e resulta em propriedades eletrônicas excepcionais. Trabalhos paradigmáticos, como os modelos de Haldane e de Kane-Mele, mostram que certos termos de massa levam a fases topologicamente não-triviais em materiais favo-de-mel. Contudo, tais massas são inexistentes ou desprezíveis em folhas de grafeno isoladas. Nessa tese, nós seguimos outra abordagem: nós investigamos fases topológicas em grafeno resultantes de correlações eletrônicas. Na primeira parte, nós exploramos a emergência de modos de Majorana com energia zero quando supercondutividade é induzida por efeito de proximidade nos estados de borda com antiferromagnetismo não-colinear. Nós derivamos uma teoria de baixas energias para os estados de Majorana combinando condições de contorno de reflexões normais e de Andreev. A natureza de duas bandas desse sistema nos motivou a extender a classificação de de supercondutores topológicos unidimensionais para sistemas multibandas. Nós finalmente investigamos experimentos no estado-da-arte em grafeno no estado Hall quântico em proximidade com um supercondutor e exploramos os possíveis mecanismospara a propagação de estados de Andreev na interface normal/supercondutor. Nossos resultados mostram que a interferência de estados de Andreev recentemente reportada ocorre por disordem na interface. Além disso, nós apontamos melhoras necessárias para alcançar o regime topológico. A segunda parte dessa tese é dedicada ao estudo de correlações eletrônicas em superedes de grafeno flambadas. A flambagem acontece por conta da relaxação da estrutura resultante da aplicação de tensão no plano do material. Por uma perspectiva de baixas energias, elétrons sentem a aplicação de um campo pseudo-magnético. Esse campo leva a formação de níveis de pseudo-Landau, levando a uma diminuição da largura de banda e aumento da densidade de estados no ponto de neutralidade de carga. Com isso, as interações elétronelétron aumentam, e fases correlacionadas aparecem. Nós provamos, usando o modelo de Hubbard, a existência de ferrimagnetismo modulado numa superrede e mostramos o controle elétrico das correlações eletrônicas. Ademais, nós desenvolvemos uma teoria de baixas energias para esse sistema e exploramos os efeitos de interações de longo alcance, mostrando uma fase charge density wave concorrente. Finalmente, nós mostramos que as duas fases correlacionadas apresentam regimes de isolante Hall quântico de vale, propondo superredes flambadas de grafeno como plataformas para topologia de vale resultante de correlações eletrônicas.Biblioteca Digitais de Teses e Dissertações da USPMartins, Gabrielle WeberRodrigues Junior, DurvalManesco, Antonio Lucas Rigotti2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-04052022-112041Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Correlations and topology in hybrid graphene-based devices Correlações e topologia em dispositivos híbridos baseados em grafeno |
title |
Correlations and topology in hybrid graphene-based devices |
spellingShingle |
Correlations and topology in hybrid graphene-based devices Manesco, Antonio Lucas Rigotti Andreev reflections correlações eletrônicas electronic correlations fases topológicas grafeno graphene reflexões de Andreev superconductivity supercondutividade topological phases |
title_short |
Correlations and topology in hybrid graphene-based devices |
title_full |
Correlations and topology in hybrid graphene-based devices |
title_fullStr |
Correlations and topology in hybrid graphene-based devices |
title_full_unstemmed |
Correlations and topology in hybrid graphene-based devices |
title_sort |
Correlations and topology in hybrid graphene-based devices |
author |
Manesco, Antonio Lucas Rigotti |
author_facet |
Manesco, Antonio Lucas Rigotti |
author_role |
author |
dc.contributor.none.fl_str_mv |
Martins, Gabrielle Weber Rodrigues Junior, Durval |
dc.contributor.author.fl_str_mv |
Manesco, Antonio Lucas Rigotti |
dc.subject.por.fl_str_mv |
Andreev reflections correlações eletrônicas electronic correlations fases topológicas grafeno graphene reflexões de Andreev superconductivity supercondutividade topological phases |
topic |
Andreev reflections correlações eletrônicas electronic correlations fases topológicas grafeno graphene reflexões de Andreev superconductivity supercondutividade topological phases |
description |
Graphene is a two-dimensional carbon allotrope with a honeycomb crystal structure in which electronic excitations behave as massless Dirac particles. The absence of an effective mass makes graphene a gapless material with outstanding electronic properties. Paradigmatic works, such as Haldane and Kane-Mele models, show that certain mass terms in honeycomb materials lead to topologically non-trivial phases. However this masses are inexistent or nearly negligible in free-standing graphene. In this thesis, we follow a diferente approach: we investigate topological phases in graphene driven by electronic correations. In the first part, we explore the emergence of Majorana zero modes when superconductivity is induced by proximity effect at the canted-antiferromagnetic quantum Hall edge states.We derive a low-energy theory for the Majorana end states combining bundary conditions for normal and Andreev reflections. The two-band nature of this system motivated us to extend the classification of one-dimensional topological superconductors to multiband systems. We finally investigate the current status of state-of-art experiments on proximitized quantum Hall graphene and explore possible mechanisms for the propagation of Andreev edge states at the normal/superconductor interface. Or results show that the recently reported interference of chiral Andreev edge states is due to disorder at the interface. Furthermore, we point out necessary improvements to achieve the topological regime. The second part of this thesis is devoted to study electronic correlations in buckled graphene superlattices reported in a recent experiment. The buckling transition occurs when the structure relaxes under in-plane strain. From the low-energy perspective, electrons experience strain similarly to a pseudo-magnetic field. This field leads to the formation of pseudo-Landau levels, resulting in a bandwidth quench and an increase of the density of states at half-filling. Thus, the effects of electron-electron interactions are enhanced, and correlated phases take place. We prove the existence of a modulated ferrimagnetic superlattice from Hubbard calculations and show the possibility of electric tunability of correlations. Moreover, we develop a low-energy theory for this system and explore the effects of long-range interactions, showing the existance of a competing charge density wave phase. Finally, we show that both correlated phases present quantum valley Hall insulator regimes, proposing buckled graphene superlattices as a platform for correlation-driven valley topology. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/ |
url |
https://www.teses.usp.br/teses/disponiveis/97/97134/tde-04052022-112041/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256486820970496 |