Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.

Detalhes bibliográficos
Autor(a) principal: Hayashi, Marcelo Tanaka
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3150/tde-28072017-144405/
Resumo: Ao longo da última década o método adjunto tem sido consolidado como uma das mais versáteis e bem sucedidas ferramentas de otimização aerodinâmica e projeto inverso na Dinâmica dos Fluidos Computacional. Ele se tornou uma área de pesquisa por si só, criando uma grande variedade de aplicações e uma literatura prolífica. Entretanto, alguns aspectos relevantes do método permanecem ainda relativamente pouco explorados na literatura. Como é o caso das condições de contorno adjuntas e, mais especificamente, com respeito a fronteiras permeáveis. Esta dissertação discute detalhadamente uma nova forma de tratar o problema de contorno, que tem como objetivo assegurar que as equações adjuntas sejam bem-postas. O principal objetivo da otimização aerodinâmica consiste na tentativa de minimizar (ou maximizar) uma determinada medida de mérito. As aplicações de projeto inverso são desenvolvidas para escoamentos Euler 2-D ao redor de aerofólios, representados com a parametrização CST (Class-Shape function Transformation) proposta por Kulfan e Bussoletti (2006), em regime de vôo transônico e com domínio discretizado por malhas não-estruturadas de triângulos através de um ciclo de projeto, que utiliza o método steepest descent como algoritmo de busca da direção que minimiza (ou maximiza) a função de mérito. As equações adjuntas são derivadas na sua formulação contínua e suas condições de contorno são determinadas por equações diferenciais características adjuntas e relações de compatibilidade compatíveis com as variações realizáveis da física do escoamento. As variáveis adjuntas são, então, vistas como forças de vínculo generalizadas, que asseguram a realizabilidade de variações do escoamento.
id USP_d897c176dd00807663819ae166b894b3
oai_identifier_str oai:teses.usp.br:tde-28072017-144405
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.Sem título em inglêsAdjoint methodAerodinâmicaAerodynamicsBoundary conditionsComputational fluid dynamicsCondições de controleDinâmica dos fluidos computacionaisMétodo adjuntoOptimizationOtimizaçãoAo longo da última década o método adjunto tem sido consolidado como uma das mais versáteis e bem sucedidas ferramentas de otimização aerodinâmica e projeto inverso na Dinâmica dos Fluidos Computacional. Ele se tornou uma área de pesquisa por si só, criando uma grande variedade de aplicações e uma literatura prolífica. Entretanto, alguns aspectos relevantes do método permanecem ainda relativamente pouco explorados na literatura. Como é o caso das condições de contorno adjuntas e, mais especificamente, com respeito a fronteiras permeáveis. Esta dissertação discute detalhadamente uma nova forma de tratar o problema de contorno, que tem como objetivo assegurar que as equações adjuntas sejam bem-postas. O principal objetivo da otimização aerodinâmica consiste na tentativa de minimizar (ou maximizar) uma determinada medida de mérito. As aplicações de projeto inverso são desenvolvidas para escoamentos Euler 2-D ao redor de aerofólios, representados com a parametrização CST (Class-Shape function Transformation) proposta por Kulfan e Bussoletti (2006), em regime de vôo transônico e com domínio discretizado por malhas não-estruturadas de triângulos através de um ciclo de projeto, que utiliza o método steepest descent como algoritmo de busca da direção que minimiza (ou maximiza) a função de mérito. As equações adjuntas são derivadas na sua formulação contínua e suas condições de contorno são determinadas por equações diferenciais características adjuntas e relações de compatibilidade compatíveis com as variações realizáveis da física do escoamento. As variáveis adjuntas são, então, vistas como forças de vínculo generalizadas, que asseguram a realizabilidade de variações do escoamento.Over the last decade the adjoint method has been consolidated as one of the most versatile and successful tools of aerodynamic optimization and inverse design in Computational Fluid Dynamics. It has become a research area of its own, spawning a large variety of applications and a prolific literature. Yet, some relevant aspects of the method remain relatively less explored in the literature. Such is the case with the adjoint boundary conditions and, more specifically, with regard to permeable boundaries. This dissertation discusses at length a novel approach to the boundary problem, which aims at ensuring the well-posedness of the adjoint equations. The main goal of aerodynamic optimization consists in attempting to minimize (or maximize) a certain mesure of merit. The inverse design applications are developed for 2-D Euler flows around airfoils, represented with the CST (Class-Shape function Transformation) parameterization proposed by Kulfan and Bussoletti (2006), in the transonic flight regime and domain discretized by triangle unstructured meshes in a design loop which makes use of the steepest descent method as search direction that minimizes (or maximizes) the mesure of merit. Adjoint equations are derived in the continuous formulation and their boundary conditions are determined by adjoint characteristic differential equations and compatibility relations. The latter are derived so as to be compatible with the realizable variations of physical quantities. The adjoint variables are seen as generalized constraint forces, which ensure the realizability of flow variations.Biblioteca Digitais de Teses e Dissertações da USPVolpe, Ernani VitilloHayashi, Marcelo Tanaka2009-02-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3150/tde-28072017-144405/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:03:12Zoai:teses.usp.br:tde-28072017-144405Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:03:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
Sem título em inglês
title Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
spellingShingle Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
Hayashi, Marcelo Tanaka
Adjoint method
Aerodinâmica
Aerodynamics
Boundary conditions
Computational fluid dynamics
Condições de controle
Dinâmica dos fluidos computacionais
Método adjunto
Optimization
Otimização
title_short Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
title_full Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
title_fullStr Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
title_full_unstemmed Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
title_sort Estudo conceitual do problema adjunto baseado nas equações de Euler para aplicações de otimização aerodinâmica.
author Hayashi, Marcelo Tanaka
author_facet Hayashi, Marcelo Tanaka
author_role author
dc.contributor.none.fl_str_mv Volpe, Ernani Vitillo
dc.contributor.author.fl_str_mv Hayashi, Marcelo Tanaka
dc.subject.por.fl_str_mv Adjoint method
Aerodinâmica
Aerodynamics
Boundary conditions
Computational fluid dynamics
Condições de controle
Dinâmica dos fluidos computacionais
Método adjunto
Optimization
Otimização
topic Adjoint method
Aerodinâmica
Aerodynamics
Boundary conditions
Computational fluid dynamics
Condições de controle
Dinâmica dos fluidos computacionais
Método adjunto
Optimization
Otimização
description Ao longo da última década o método adjunto tem sido consolidado como uma das mais versáteis e bem sucedidas ferramentas de otimização aerodinâmica e projeto inverso na Dinâmica dos Fluidos Computacional. Ele se tornou uma área de pesquisa por si só, criando uma grande variedade de aplicações e uma literatura prolífica. Entretanto, alguns aspectos relevantes do método permanecem ainda relativamente pouco explorados na literatura. Como é o caso das condições de contorno adjuntas e, mais especificamente, com respeito a fronteiras permeáveis. Esta dissertação discute detalhadamente uma nova forma de tratar o problema de contorno, que tem como objetivo assegurar que as equações adjuntas sejam bem-postas. O principal objetivo da otimização aerodinâmica consiste na tentativa de minimizar (ou maximizar) uma determinada medida de mérito. As aplicações de projeto inverso são desenvolvidas para escoamentos Euler 2-D ao redor de aerofólios, representados com a parametrização CST (Class-Shape function Transformation) proposta por Kulfan e Bussoletti (2006), em regime de vôo transônico e com domínio discretizado por malhas não-estruturadas de triângulos através de um ciclo de projeto, que utiliza o método steepest descent como algoritmo de busca da direção que minimiza (ou maximiza) a função de mérito. As equações adjuntas são derivadas na sua formulação contínua e suas condições de contorno são determinadas por equações diferenciais características adjuntas e relações de compatibilidade compatíveis com as variações realizáveis da física do escoamento. As variáveis adjuntas são, então, vistas como forças de vínculo generalizadas, que asseguram a realizabilidade de variações do escoamento.
publishDate 2009
dc.date.none.fl_str_mv 2009-02-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3150/tde-28072017-144405/
url http://www.teses.usp.br/teses/disponiveis/3/3150/tde-28072017-144405/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256541071147008