Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/44/44137/tde-04042022-095105/ |
Resumo: | Continental crust growth ratio has been challenging researchers significantly over the past decades, and the existing models vary from episodic to continuous growth ratios, the latter with a more significant role of the Archean Eon. In the South American Platform, the Amazonian Craton (AC) provides an excellent window into Precambrian continental crust, with many exposure of Archean and Paleoproterozoic continental crust. Interestingly, on a global perspective, Archean tectonics and rockassociations has been targeted more frequently and the number of papers overcomes significantly Paleoproterozoic-related publications. Looking closely to south-central AC, the Tapajós Mineral Province (TMP) consists on an excellent area of study as it comprises multiple Orosirian igneous suites within the 2.0 1.87 Ga interval with associated mineral deposits and occurrences of both base and precious metals. Within this aspect, this study provides new petrogenetic constraints on the TMPs igneous suites based on whole-rock and zircon-geochemistry, with the respective tectonic and metallogenetic implications. The results allow the separation of two main age groups within the TMP: the older- (2.0 1.95 Ga) and younger magmatic sequences (1.89 1 .86 Ga). The older magmatic sequence (OMS) is divided into groups I, II and III granitoids that according to the results acquired evolved through fractional crystallization and represents the first batches and evolution of the magmatic arc. Group I marks the onset of OMS and encompasses ferroan, calc-alkalic and peraluminous granites and granodiorites dated in 2011 Ma, characterized by evolved Nd(T) and high zircon saturation temperature (798°C), all compatible with a strong crustal component on magmatic arc magmas. Geochemical modelling shows a dry and oxidized evolution towards high La/Yb and Sr/Y ratios through extraction of plagioclase, pyroxene, biotite, magnetite and titanite. In addition, zircon-based fO2 estimates below FMQ combined with their pyroxene-bearing evolution renders group I magmas a low metallogenetic favorability for the formation of magmatic hydrothermal (Cu Au) mineral deposits. Group II rocks are compositionally more variable, represent the evolution of the arc magmatism, and comprises magnesian to ferroan, alkali-calcic to calc-alkalic, metaluminous to felsic-peraluminous granodiorites, monzo- and syenogranites of ca. 1986 Ma, characterized by moderately negative Nd(T) (from -1 to -3). Geochemical modelling shows an evolution compatible with amphibole and magnetite extraction, which is also corroborated by low Dy/Yb zircon rims and fO2 between FMQ +0 and +4. These set of attributes allow group II granites (and its volcanic equivalents) to be considered as metallogenetic fertile for the formation of magmatic-hydrothermal Cu Au mineral systems. In fact, most rocks from the Tocantinzinho, Chapéu do Sol, São Jorge, Coringa and Patrocínio deposits belong to group II rocks, where mineralization is defined by disseminated gold-bearing sulfides or by pyrite-quartz ±gold ±chalcopyrite veins and veinlets most often found in the sericitic and, less frequently, in the potassic and propylitic alteration zones. Group III rocks are rarer in the TMP and are defined by high-K, ferroan, alkalic, metaluminous to slightly peraluminous quartz-monzonites and quartz-syenites with ages that vary from 1993 and 1974 Ma. Whole-rock geochemistry shows an evolution coherent with K-feldspar, plagioclase, biotite, apatite, clinopyroxene and ilmenite fractionation, which is accompanied by stronger negative Eu anomalies, Sr and Ba depletion, and low Sr/Y and La/Yb ratios. Its anhydrous and reduced petrologic trend is supported by fO2 values below FMQ +1. Despite its synchronicity with group II, group IIIs petrogenesis is harder to be constrained. In view of their reducing and anhydrous evolution, decompression melting of metasomatized mantle is proposed as the main mechanism for generating group III magmas. Moreover, these rocks should be considered as metallogenetically unfertile (pyroxene- and ilmenite-bearing evolution), yet, on the field syenites and monzonites are often affected by hydrothermal alteration and show disseminated and gold-bearing pyrite and pyrrhotite crysts on the sericitic, potassic and/or carbonatic alteration halos. As a consequence, group III rocks are mineralized as the result of the interaction with the more hydrous, oxidized and fertile group II magmas. The younger magmatic sequence (YMS) is represented by the Iriri Group volcanics and by the Parauari (PAR) and Maloquinha (MLQ) Intrusive Suites (described on the V3, Palito and Batalha deposits). Despite their spread on TMPs geologic maps, these rocks are more often spotted on the eastern part of the province. The first pulses of YMS are represented by the PAR granitoids and coeval Iriri volcanics. Both comprise magnesian to ferroan, calc-alkalic to alkali-calcic and alkalic, metaluminous to felsic-peraluminous rocks. Intermediate Iriri rocks evolved towards higher Dy/Yb, Sr/Y and La/Yb ratios through K-feldspar, amphibole, anorthite-rich plagioclase and biotite extraction. Acid Iriri and PAR granitoids evolved on a similar petrologic trend compatible with albiticplagioclase, K-feldspar, pyroxene, titanite and apatite fractionation, that drives the evolving magmas towards lower Sr/Y, La/Yb and Eu/Eu* ratios and suggest anhydrous and reduced mafic sources. PAR granitoids show more strongly negative Nd(t) (average of -4.85) when compared with Iriri rocks, indicating a longer period of residence in crustal hot zones. Its geochemistry signature is interpreted as the result of metasomatized mantle melting on a late- or post-orogenic tectonic setting. Despite the anhydrous and reduced characteristic of the magmas, the geologic framework of YMS is adequate for the formation of gold-rich (or gold only) magmatic-hydrothermal mineral deposits, as these magmas efficiently mobilize previously formed, chalcophileand siderophile-rich sulfides. MLQ marks the last pulses of the Orosirian magmatism in the TMP and is characterized by ferroan, alkali-calcic and moderately-peraluminous alkali-granites that evolved on a pyroxene- and ilmenite-bearing trend. These characteristics and the close to 0 or slightly negative Nd(T) (between -2.64 and -0.28) indicates metasomatized mantle melting, likely involving the directly underthrusted SCLM. From a metallogenetic perspective, MLQ magmatism show a low favorability for the formation of magmatic-hydrothermal mineral systems. |
id |
USP_d8be3a0af4712d6cdba39fcb80997124 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04042022-095105 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian CratonEvolução magmática, petrogênese e implicações metalogenéticas do magmatismo Orosiriano na Província Mineral de Tapajós, Cráton AmazônicoAmazonian CratonArco magmáticoCráton AmazônicoDepósitos magmático hidrotermaisGeochemistryGeochronologyGeocronologiaGeoquímicaMagmatic arcMagmatic-hydrothermal mineral depositsProvíncia Mineral do TapajósTapajós Mineral ProvinceZircãoZirconContinental crust growth ratio has been challenging researchers significantly over the past decades, and the existing models vary from episodic to continuous growth ratios, the latter with a more significant role of the Archean Eon. In the South American Platform, the Amazonian Craton (AC) provides an excellent window into Precambrian continental crust, with many exposure of Archean and Paleoproterozoic continental crust. Interestingly, on a global perspective, Archean tectonics and rockassociations has been targeted more frequently and the number of papers overcomes significantly Paleoproterozoic-related publications. Looking closely to south-central AC, the Tapajós Mineral Province (TMP) consists on an excellent area of study as it comprises multiple Orosirian igneous suites within the 2.0 1.87 Ga interval with associated mineral deposits and occurrences of both base and precious metals. Within this aspect, this study provides new petrogenetic constraints on the TMPs igneous suites based on whole-rock and zircon-geochemistry, with the respective tectonic and metallogenetic implications. The results allow the separation of two main age groups within the TMP: the older- (2.0 1.95 Ga) and younger magmatic sequences (1.89 1 .86 Ga). The older magmatic sequence (OMS) is divided into groups I, II and III granitoids that according to the results acquired evolved through fractional crystallization and represents the first batches and evolution of the magmatic arc. Group I marks the onset of OMS and encompasses ferroan, calc-alkalic and peraluminous granites and granodiorites dated in 2011 Ma, characterized by evolved Nd(T) and high zircon saturation temperature (798°C), all compatible with a strong crustal component on magmatic arc magmas. Geochemical modelling shows a dry and oxidized evolution towards high La/Yb and Sr/Y ratios through extraction of plagioclase, pyroxene, biotite, magnetite and titanite. In addition, zircon-based fO2 estimates below FMQ combined with their pyroxene-bearing evolution renders group I magmas a low metallogenetic favorability for the formation of magmatic hydrothermal (Cu Au) mineral deposits. Group II rocks are compositionally more variable, represent the evolution of the arc magmatism, and comprises magnesian to ferroan, alkali-calcic to calc-alkalic, metaluminous to felsic-peraluminous granodiorites, monzo- and syenogranites of ca. 1986 Ma, characterized by moderately negative Nd(T) (from -1 to -3). Geochemical modelling shows an evolution compatible with amphibole and magnetite extraction, which is also corroborated by low Dy/Yb zircon rims and fO2 between FMQ +0 and +4. These set of attributes allow group II granites (and its volcanic equivalents) to be considered as metallogenetic fertile for the formation of magmatic-hydrothermal Cu Au mineral systems. In fact, most rocks from the Tocantinzinho, Chapéu do Sol, São Jorge, Coringa and Patrocínio deposits belong to group II rocks, where mineralization is defined by disseminated gold-bearing sulfides or by pyrite-quartz ±gold ±chalcopyrite veins and veinlets most often found in the sericitic and, less frequently, in the potassic and propylitic alteration zones. Group III rocks are rarer in the TMP and are defined by high-K, ferroan, alkalic, metaluminous to slightly peraluminous quartz-monzonites and quartz-syenites with ages that vary from 1993 and 1974 Ma. Whole-rock geochemistry shows an evolution coherent with K-feldspar, plagioclase, biotite, apatite, clinopyroxene and ilmenite fractionation, which is accompanied by stronger negative Eu anomalies, Sr and Ba depletion, and low Sr/Y and La/Yb ratios. Its anhydrous and reduced petrologic trend is supported by fO2 values below FMQ +1. Despite its synchronicity with group II, group IIIs petrogenesis is harder to be constrained. In view of their reducing and anhydrous evolution, decompression melting of metasomatized mantle is proposed as the main mechanism for generating group III magmas. Moreover, these rocks should be considered as metallogenetically unfertile (pyroxene- and ilmenite-bearing evolution), yet, on the field syenites and monzonites are often affected by hydrothermal alteration and show disseminated and gold-bearing pyrite and pyrrhotite crysts on the sericitic, potassic and/or carbonatic alteration halos. As a consequence, group III rocks are mineralized as the result of the interaction with the more hydrous, oxidized and fertile group II magmas. The younger magmatic sequence (YMS) is represented by the Iriri Group volcanics and by the Parauari (PAR) and Maloquinha (MLQ) Intrusive Suites (described on the V3, Palito and Batalha deposits). Despite their spread on TMPs geologic maps, these rocks are more often spotted on the eastern part of the province. The first pulses of YMS are represented by the PAR granitoids and coeval Iriri volcanics. Both comprise magnesian to ferroan, calc-alkalic to alkali-calcic and alkalic, metaluminous to felsic-peraluminous rocks. Intermediate Iriri rocks evolved towards higher Dy/Yb, Sr/Y and La/Yb ratios through K-feldspar, amphibole, anorthite-rich plagioclase and biotite extraction. Acid Iriri and PAR granitoids evolved on a similar petrologic trend compatible with albiticplagioclase, K-feldspar, pyroxene, titanite and apatite fractionation, that drives the evolving magmas towards lower Sr/Y, La/Yb and Eu/Eu* ratios and suggest anhydrous and reduced mafic sources. PAR granitoids show more strongly negative Nd(t) (average of -4.85) when compared with Iriri rocks, indicating a longer period of residence in crustal hot zones. Its geochemistry signature is interpreted as the result of metasomatized mantle melting on a late- or post-orogenic tectonic setting. Despite the anhydrous and reduced characteristic of the magmas, the geologic framework of YMS is adequate for the formation of gold-rich (or gold only) magmatic-hydrothermal mineral deposits, as these magmas efficiently mobilize previously formed, chalcophileand siderophile-rich sulfides. MLQ marks the last pulses of the Orosirian magmatism in the TMP and is characterized by ferroan, alkali-calcic and moderately-peraluminous alkali-granites that evolved on a pyroxene- and ilmenite-bearing trend. These characteristics and the close to 0 or slightly negative Nd(T) (between -2.64 and -0.28) indicates metasomatized mantle melting, likely involving the directly underthrusted SCLM. From a metallogenetic perspective, MLQ magmatism show a low favorability for the formation of magmatic-hydrothermal mineral systems.Muito tem se debatido nos últimos anos quanto ao ritmo de crescimento da crosta continental ao longo das eras geológicas, sendo os modelos existentes variáveis entre crescimento episódico (com picos de produção), ou então de caráter mais contínuo com papel mais relevante do Arqueano. No contexto da Plataforma Sul-Americana, o Cráton Amazônico consiste em uma boa área de estudo quando se refere à crosta Pré- Cambriana, com boas exposições de rochas Arquenas e Proterozóicas parcialmente cobertas por sedimentos siliciclásticos associados às bacias hidrológicas fanerozóicas. Curiosamente, em um contexto global, as associações rochosas e a geodinâmica arqueana, apesar de serem mais raras, têm chamado mais a atenção dos pesquisadores, e o número de publicações referentes ao Arqueano são muito maiores do que as referentes ao Proterozóico. Olhando para a porção centro-sul do Cráton Amazônico, a Província Mineral do Tapajós (PMT) consiste em uma excelente área de estudo, onde predominam intrusões orosirianas (2.0 e 1.87 Ga) muitas das quais associadas à ocorrências e depósitos minerais de metais base e preciosos. Nesse sentido, esse estudo traz considerações petrogenéticas referente às suítes ígneas presentes na PMT bem como as respectivas implicações tectônicas e metalogenéticas para a região. Os resultados permitiram a separação das rochas presentes no Tapajós em dois conjuntos: a sequência magmática antiga (2.0 1.95 Ga) e a sequência magmática nova (1.89 1.86 Ga). A sequência antiga (OMS na sigla em inglês) é dividida em três subgrupos de acordo com os resultados obtidos. O grupo I representa os primeiros pulsos de magmatismo na PMT e caracteriza-se por granitos e granodioritos peraluminosos, ferroanos e cálcio-alcalinos, datados em 2011 Ma, caracterizados por Nd(t) evoluído (8.36) e alta temperatura de saturação em zircão (798°C), características que indicam a contribuição de crosta continental para a formação desses magmas, marcando o início do arco magmático. Os dados de modelamento geoquímico mostram que as rochas do grupo I evoluíram em um trend anidro e oxidado em direção a altas razões La/Yb e Sr/Y através da extração de plagioclásio, piroxênio, biotita, magnetita e titanita. Adicionalmente, a fO2 dos magmas abaixo de FMQ e a evolução anidra conferem às rochas do grupo I umas baixa favorabilidade para a formação de depósitos magmático hidrotermais de CuAu. As rochas do grupo II são mais variáveis em termos composicionais e representam a evolução do arco magmático. O grupo é marcado por sieno- e monzogranitos, magnesianos a ferroanos, álcali-cálcicos à cálcio-alcalinos, metaluminosos a félsicoperaluminosos, com idade em 1986 Ma e caracterizados por Nd(t) moderadamente negativos (de 1 a 3). Modelamento geoquímico mostra que essas rochas evoluíram sob a presença de anfibólio, responsável pela baixa razão Dy/Yb nas bordas dos zircões, e magnetita, que explica a fO2 até FMQ +4. Esses atributos geoquímicos permitem classificar as rochas do grupo II (e as equivalentes extrusivas) como férteis do ponto de vista metalogenético. De fato, e não surpreendentemente, a maior parte dos depósitos na PMT está hospedado nessas rochas (Tocantinzinho, Chapéu do Sol, São Jorge, Coringa e Patrocínio) onde o minério consiste principalmente em veios e vênulas de pirita e quartzo ±ouro nas alterações sericíticas, potássica e/ou propilítica (com sulfetos disseminados mais raramente). O grupo III é comparativamente mais raro na PMT, e é composto por quartzo-sienitos e quartzo-monzonitos de alto potássio, ferroanos, alcalinos, metaluminosos a fracamente peraluminosos, de idades que variam de 1993 à 1974 Ma. Modelamento geoquímico mostra uma evolução compatível com K-feldspato, plagioclásios, biotita, apatita, piroxênio e ilmenita, com anomalias negativas de Eu e baixas razões Sr/Y e La/Yb. A evolução reduzida é coerente com os valores de fO2 abaixo de FMQ +1. Apesar de ser síncrona com as rochas do grupo II, os mecanismos geradores da sequência de alto potássio não é de fácil entendimento. Com base na característica reduzida e anidra dos magmas, a petrogênese das rochas do grupo III possivelmente envolve fusão por descompressão de manto litosférico metassomatizado, possivelmente induzida por corner-flow associado à subducção. Complementarmente, essas rochas em teoria não apresentam as características de magmas formadores de depósitos magmático hidrotermais, entretanto, em campo foi constatado que essas rochas são afetadas por alteração hidrotermal e apresentam mineralização disseminada representada por pirrotita ±ouro presente nas alterações sericítica, potássica e/ou carbonática. Sendo assim, as rochas do grupo III podem ser consideradas férteis devido à interação com os magmas mais hidratados e oxidados do grupo II. A sequência magmática nova (YMS na sigla em inglês) é representada pelas vulcânicas do Grupo Iriri e pelas rochas graníticas das suítes intrusivas Parauari (PAR) e Maloquinha (MLQ) (e foram descritas nos depósitos V3, Palito e Batalha). As rochas da YMS são mais frequentes na porção leste da PMT. PAR e as vulcânicas do Grupo Iriri representam os primeiros pulsos de magmatismo da YMS, e as rochas são magnesianas a ferroanas, cálcio-alcalinas à álcali-cálcicas e alcalinas, metaluminosas a félsica-peraluminosas. As vulcânicas intermediárias evoluem em direção a altas razões Dy/Yb, Sr/Y e La/Yb através da cristalização de K-feldspato, anfibólio, plagioclásio e biotita. A parte ácida do Grupo Iriri e as rochas graníticas da PAR evoluíram em um trend similar compatível com plagioclásio, K-feldspato, piroxênio, titanita e apatita, em direção a baixas razões Sr/Y, La/Yb e Eu/Eu*, compatível com fontes máficas reduzidas e anidras. As rochas da suíte PAR apresentam Nd(t) mais fortemente negativos (média de -4.85) quando comparado às rochas do Grupo Iriri, sugerindo um maior tempo de residência em reservatórios crustais. A assinatura geoquímica dos granitos PAR é interpretada como o resultado da fusão de manto metassomatizado em um ambiente tardi- a pós-orogênico. Apesar da característica anidra e reduzida, o contexto tectônico da YMS é adequado para a formação de depósitos magmático hidrotermais ricos em ouro, uma vez que esses magmas eficientemente mobilizam sulfetos previamente formados ricos em elementos siderófilos e calcófilos. MLQ representa os últimos pulsos de magmatismo orosiriano da YMS e é composta essencialmente por álcali feldspato granitos ferroanos, álcali-cálcicos, moderadamente peraluminosos, compatíveis com uma evolução com piroxênio e ilmenita. Esses atributos e os Nd(T) perto de zero ou fracamente negativos (entre -2.64 and -0.28) indicam fusão de manto litosférico metassomatizado. Do ponto de vista metalogenético, MLQ apresentam baixa favorabilidade para a formação de depósitos magmático hidrotermais de cobre e ouro.Biblioteca Digitais de Teses e Dissertações da USPJuliani, CaetanoMoyen, Jean-FrançoisCassini, Lucas Villela2021-11-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/44/44137/tde-04042022-095105/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-04-04T14:50:03Zoai:teses.usp.br:tde-04042022-095105Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-04-04T14:50:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton Evolução magmática, petrogênese e implicações metalogenéticas do magmatismo Orosiriano na Província Mineral de Tapajós, Cráton Amazônico |
title |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton |
spellingShingle |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton Cassini, Lucas Villela Amazonian Craton Arco magmático Cráton Amazônico Depósitos magmático hidrotermais Geochemistry Geochronology Geocronologia Geoquímica Magmatic arc Magmatic-hydrothermal mineral deposits Província Mineral do Tapajós Tapajós Mineral Province Zircão Zircon |
title_short |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton |
title_full |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton |
title_fullStr |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton |
title_full_unstemmed |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton |
title_sort |
Magmatic evolution, igneous petrogenesis and metallogenetic implications of the Orosirian magmatism at the Tapajós Mineral Province, Amazonian Craton |
author |
Cassini, Lucas Villela |
author_facet |
Cassini, Lucas Villela |
author_role |
author |
dc.contributor.none.fl_str_mv |
Juliani, Caetano Moyen, Jean-François |
dc.contributor.author.fl_str_mv |
Cassini, Lucas Villela |
dc.subject.por.fl_str_mv |
Amazonian Craton Arco magmático Cráton Amazônico Depósitos magmático hidrotermais Geochemistry Geochronology Geocronologia Geoquímica Magmatic arc Magmatic-hydrothermal mineral deposits Província Mineral do Tapajós Tapajós Mineral Province Zircão Zircon |
topic |
Amazonian Craton Arco magmático Cráton Amazônico Depósitos magmático hidrotermais Geochemistry Geochronology Geocronologia Geoquímica Magmatic arc Magmatic-hydrothermal mineral deposits Província Mineral do Tapajós Tapajós Mineral Province Zircão Zircon |
description |
Continental crust growth ratio has been challenging researchers significantly over the past decades, and the existing models vary from episodic to continuous growth ratios, the latter with a more significant role of the Archean Eon. In the South American Platform, the Amazonian Craton (AC) provides an excellent window into Precambrian continental crust, with many exposure of Archean and Paleoproterozoic continental crust. Interestingly, on a global perspective, Archean tectonics and rockassociations has been targeted more frequently and the number of papers overcomes significantly Paleoproterozoic-related publications. Looking closely to south-central AC, the Tapajós Mineral Province (TMP) consists on an excellent area of study as it comprises multiple Orosirian igneous suites within the 2.0 1.87 Ga interval with associated mineral deposits and occurrences of both base and precious metals. Within this aspect, this study provides new petrogenetic constraints on the TMPs igneous suites based on whole-rock and zircon-geochemistry, with the respective tectonic and metallogenetic implications. The results allow the separation of two main age groups within the TMP: the older- (2.0 1.95 Ga) and younger magmatic sequences (1.89 1 .86 Ga). The older magmatic sequence (OMS) is divided into groups I, II and III granitoids that according to the results acquired evolved through fractional crystallization and represents the first batches and evolution of the magmatic arc. Group I marks the onset of OMS and encompasses ferroan, calc-alkalic and peraluminous granites and granodiorites dated in 2011 Ma, characterized by evolved Nd(T) and high zircon saturation temperature (798°C), all compatible with a strong crustal component on magmatic arc magmas. Geochemical modelling shows a dry and oxidized evolution towards high La/Yb and Sr/Y ratios through extraction of plagioclase, pyroxene, biotite, magnetite and titanite. In addition, zircon-based fO2 estimates below FMQ combined with their pyroxene-bearing evolution renders group I magmas a low metallogenetic favorability for the formation of magmatic hydrothermal (Cu Au) mineral deposits. Group II rocks are compositionally more variable, represent the evolution of the arc magmatism, and comprises magnesian to ferroan, alkali-calcic to calc-alkalic, metaluminous to felsic-peraluminous granodiorites, monzo- and syenogranites of ca. 1986 Ma, characterized by moderately negative Nd(T) (from -1 to -3). Geochemical modelling shows an evolution compatible with amphibole and magnetite extraction, which is also corroborated by low Dy/Yb zircon rims and fO2 between FMQ +0 and +4. These set of attributes allow group II granites (and its volcanic equivalents) to be considered as metallogenetic fertile for the formation of magmatic-hydrothermal Cu Au mineral systems. In fact, most rocks from the Tocantinzinho, Chapéu do Sol, São Jorge, Coringa and Patrocínio deposits belong to group II rocks, where mineralization is defined by disseminated gold-bearing sulfides or by pyrite-quartz ±gold ±chalcopyrite veins and veinlets most often found in the sericitic and, less frequently, in the potassic and propylitic alteration zones. Group III rocks are rarer in the TMP and are defined by high-K, ferroan, alkalic, metaluminous to slightly peraluminous quartz-monzonites and quartz-syenites with ages that vary from 1993 and 1974 Ma. Whole-rock geochemistry shows an evolution coherent with K-feldspar, plagioclase, biotite, apatite, clinopyroxene and ilmenite fractionation, which is accompanied by stronger negative Eu anomalies, Sr and Ba depletion, and low Sr/Y and La/Yb ratios. Its anhydrous and reduced petrologic trend is supported by fO2 values below FMQ +1. Despite its synchronicity with group II, group IIIs petrogenesis is harder to be constrained. In view of their reducing and anhydrous evolution, decompression melting of metasomatized mantle is proposed as the main mechanism for generating group III magmas. Moreover, these rocks should be considered as metallogenetically unfertile (pyroxene- and ilmenite-bearing evolution), yet, on the field syenites and monzonites are often affected by hydrothermal alteration and show disseminated and gold-bearing pyrite and pyrrhotite crysts on the sericitic, potassic and/or carbonatic alteration halos. As a consequence, group III rocks are mineralized as the result of the interaction with the more hydrous, oxidized and fertile group II magmas. The younger magmatic sequence (YMS) is represented by the Iriri Group volcanics and by the Parauari (PAR) and Maloquinha (MLQ) Intrusive Suites (described on the V3, Palito and Batalha deposits). Despite their spread on TMPs geologic maps, these rocks are more often spotted on the eastern part of the province. The first pulses of YMS are represented by the PAR granitoids and coeval Iriri volcanics. Both comprise magnesian to ferroan, calc-alkalic to alkali-calcic and alkalic, metaluminous to felsic-peraluminous rocks. Intermediate Iriri rocks evolved towards higher Dy/Yb, Sr/Y and La/Yb ratios through K-feldspar, amphibole, anorthite-rich plagioclase and biotite extraction. Acid Iriri and PAR granitoids evolved on a similar petrologic trend compatible with albiticplagioclase, K-feldspar, pyroxene, titanite and apatite fractionation, that drives the evolving magmas towards lower Sr/Y, La/Yb and Eu/Eu* ratios and suggest anhydrous and reduced mafic sources. PAR granitoids show more strongly negative Nd(t) (average of -4.85) when compared with Iriri rocks, indicating a longer period of residence in crustal hot zones. Its geochemistry signature is interpreted as the result of metasomatized mantle melting on a late- or post-orogenic tectonic setting. Despite the anhydrous and reduced characteristic of the magmas, the geologic framework of YMS is adequate for the formation of gold-rich (or gold only) magmatic-hydrothermal mineral deposits, as these magmas efficiently mobilize previously formed, chalcophileand siderophile-rich sulfides. MLQ marks the last pulses of the Orosirian magmatism in the TMP and is characterized by ferroan, alkali-calcic and moderately-peraluminous alkali-granites that evolved on a pyroxene- and ilmenite-bearing trend. These characteristics and the close to 0 or slightly negative Nd(T) (between -2.64 and -0.28) indicates metasomatized mantle melting, likely involving the directly underthrusted SCLM. From a metallogenetic perspective, MLQ magmatism show a low favorability for the formation of magmatic-hydrothermal mineral systems. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/44/44137/tde-04042022-095105/ |
url |
https://www.teses.usp.br/teses/disponiveis/44/44137/tde-04042022-095105/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256654570061824 |