The flexible job shop scheduling problem with sequence flexibility and position-based learning effect
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/ |
Resumo: | This work addresses the flexible job shop scheduling problem with sequencing flexibility and position-based learning effect. In this variant of the flexible job shop scheduling problem, precedence constraints of the operations constituting a job are given by an arbitrary directed acyclic graph, in opposition to the classical case in which a total order is imposed. Additionally, it is assumed that the processing time of an operation in a machine is subject to a learning process such that the larger the position of the operation in the machine, the faster the operation is processed. The problem considered corresponds to modern problems of great relevance in the printing industry. Mixed integer programming and constraint programming models are presented and compared in the present work. In addition, constructive heuristics are introduced to provide an initial solution to the models\' solvers. As an alternative to the models, a local search method and four trajectory metaheuristics are considered. In the local search, we show that the classical strategy of only reallocating operations that are part of the critical path can miss better quality neighbors, as opposed to what happens in the case where there is no learning effect. Consequently, we analyze an alternative type of neighborhood reduction that eliminates only neighbors that are not better than the current solution. In addition, we also suggest a neighborhood cut and experimentally verify that this significantly reduces the neighborhood size, bringing efficiency, with minimal loss in effectiveness. Sets of benchmark instances are also introduced. Extensive numerical experiments with the proposed methods are carried on. The experiments show that simulating annealing, tabu search with reduced neighborhood and iterated local search with cropped neighborhood, built on the introduced local search, stands out in solution quality All the methods introduced, as well as the instances and solutions found, are freely available. |
id |
USP_d95db576619a01d48d1f92193e76629f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25042024-151416 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effectO problema de sequenciamento job shop com flexibilidade de sequenciamento e efeito de aprendizagem baseado em posiçãoConstraint programmingEfeito de aprendizagemFlexibilidade de roteamentoFlexibilidade de sequenciamentoInteger linear programmingJob shopJob shopLearning effectMakespamMakespanMetaheurísticasMetaheuristicsProgramação linear inteiraProgramação por restriçõesRouting flexibilitySequencing flexibilityThis work addresses the flexible job shop scheduling problem with sequencing flexibility and position-based learning effect. In this variant of the flexible job shop scheduling problem, precedence constraints of the operations constituting a job are given by an arbitrary directed acyclic graph, in opposition to the classical case in which a total order is imposed. Additionally, it is assumed that the processing time of an operation in a machine is subject to a learning process such that the larger the position of the operation in the machine, the faster the operation is processed. The problem considered corresponds to modern problems of great relevance in the printing industry. Mixed integer programming and constraint programming models are presented and compared in the present work. In addition, constructive heuristics are introduced to provide an initial solution to the models\' solvers. As an alternative to the models, a local search method and four trajectory metaheuristics are considered. In the local search, we show that the classical strategy of only reallocating operations that are part of the critical path can miss better quality neighbors, as opposed to what happens in the case where there is no learning effect. Consequently, we analyze an alternative type of neighborhood reduction that eliminates only neighbors that are not better than the current solution. In addition, we also suggest a neighborhood cut and experimentally verify that this significantly reduces the neighborhood size, bringing efficiency, with minimal loss in effectiveness. Sets of benchmark instances are also introduced. Extensive numerical experiments with the proposed methods are carried on. The experiments show that simulating annealing, tabu search with reduced neighborhood and iterated local search with cropped neighborhood, built on the introduced local search, stands out in solution quality All the methods introduced, as well as the instances and solutions found, are freely available.Este trabalho aborda o problema do job shop flexível com flexibilidade de sequenciamento e efeito de aprendizado baseado na posição. Nesta variante do problema, as restrições de precedência das operações que compõem uma tarefa são dadas por um grafo direcionado acíclico arbitrário, em oposição ao caso clássico em que uma ordem total é imposta. Além disso, assume-se que o tempo de processamento de uma operação em uma máquina está sujeito a um processo de aprendizado, de modo que quanto maior a posição da operação na máquina, mais rápida a operação é processada. O problema considerado corresponde a problemas modernos de grande relevância na indústria de impressão. Modelos de programação inteira mista e programação por restrições são apresentados e comparados no presente trabalho. Além disso, heurísticas construtivas são introduzidas para fornecer uma solução inicial para os métodos exatos de resolução. Como alternativa aos modelos, um método de busca local e quatro metaheurísticas de trajetória são considerados. Na busca local, mostramos que a estratégia clássica de realocar apenas as operações que fazem parte do caminho crítico pode perder vizinhos de melhor qualidade, ao contrário do que acontece no caso em que não há efeito de aprendizado. Consequentemente, analisamos um tipo alternativo de redução de vizinhança que elimina apenas vizinhos que não são melhores que a solução atual. Além disso, também sugerimos um corte de vizinhança e verificamos experimentalmente que isso reduz significativamente o tamanho da vizinhança, trazendo eficiência, com perda mínima de eficácia. Conjuntos de instâncias de referência também são introduzidos. Experimentos numéricos extensivos com os métodos propostos são realizados. Os experimentos mostram que as metaheurísticas, criadas com base na busca local introduzida, simulated annealing, tabu search com vizinhança reduzida e iterated local search com vizinhança com corte se destacam em qualidade de solução. Todos os métodos introduzidos, bem como as instâncias e soluções encontradas, estão disponíveis abertamente.Biblioteca Digitais de Teses e Dissertações da USPBirgin, Ernesto Julian GoldbergAraújo, Kennedy Anderson Guimarães de2024-04-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-30T23:42:02Zoai:teses.usp.br:tde-25042024-151416Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-30T23:42:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect O problema de sequenciamento job shop com flexibilidade de sequenciamento e efeito de aprendizagem baseado em posição |
title |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect |
spellingShingle |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect Araújo, Kennedy Anderson Guimarães de Constraint programming Efeito de aprendizagem Flexibilidade de roteamento Flexibilidade de sequenciamento Integer linear programming Job shop Job shop Learning effect Makespam Makespan Metaheurísticas Metaheuristics Programação linear inteira Programação por restrições Routing flexibility Sequencing flexibility |
title_short |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect |
title_full |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect |
title_fullStr |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect |
title_full_unstemmed |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect |
title_sort |
The flexible job shop scheduling problem with sequence flexibility and position-based learning effect |
author |
Araújo, Kennedy Anderson Guimarães de |
author_facet |
Araújo, Kennedy Anderson Guimarães de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Birgin, Ernesto Julian Goldberg |
dc.contributor.author.fl_str_mv |
Araújo, Kennedy Anderson Guimarães de |
dc.subject.por.fl_str_mv |
Constraint programming Efeito de aprendizagem Flexibilidade de roteamento Flexibilidade de sequenciamento Integer linear programming Job shop Job shop Learning effect Makespam Makespan Metaheurísticas Metaheuristics Programação linear inteira Programação por restrições Routing flexibility Sequencing flexibility |
topic |
Constraint programming Efeito de aprendizagem Flexibilidade de roteamento Flexibilidade de sequenciamento Integer linear programming Job shop Job shop Learning effect Makespam Makespan Metaheurísticas Metaheuristics Programação linear inteira Programação por restrições Routing flexibility Sequencing flexibility |
description |
This work addresses the flexible job shop scheduling problem with sequencing flexibility and position-based learning effect. In this variant of the flexible job shop scheduling problem, precedence constraints of the operations constituting a job are given by an arbitrary directed acyclic graph, in opposition to the classical case in which a total order is imposed. Additionally, it is assumed that the processing time of an operation in a machine is subject to a learning process such that the larger the position of the operation in the machine, the faster the operation is processed. The problem considered corresponds to modern problems of great relevance in the printing industry. Mixed integer programming and constraint programming models are presented and compared in the present work. In addition, constructive heuristics are introduced to provide an initial solution to the models\' solvers. As an alternative to the models, a local search method and four trajectory metaheuristics are considered. In the local search, we show that the classical strategy of only reallocating operations that are part of the critical path can miss better quality neighbors, as opposed to what happens in the case where there is no learning effect. Consequently, we analyze an alternative type of neighborhood reduction that eliminates only neighbors that are not better than the current solution. In addition, we also suggest a neighborhood cut and experimentally verify that this significantly reduces the neighborhood size, bringing efficiency, with minimal loss in effectiveness. Sets of benchmark instances are also introduced. Extensive numerical experiments with the proposed methods are carried on. The experiments show that simulating annealing, tabu search with reduced neighborhood and iterated local search with cropped neighborhood, built on the introduced local search, stands out in solution quality All the methods introduced, as well as the instances and solutions found, are freely available. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-25042024-151416/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1818279114132422656 |