Técnicas de amostragem inteligente em simulação de Monte Carlo

Detalhes bibliográficos
Autor(a) principal: Santos, Ketson Roberto Maximiano dos
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-02042014-150820/
Resumo: A confiabilidade de estruturas apresenta sólidos desenvolvimentos teóricos e crescentes aplicações práticas. Durante os últimos anos, avanços significativos foram obtidos em termos dos métodos de transformação (FORM, SORM), bem como em termos das técnicas de simulação de Monte Carlo. Métodos de transformação se mostraram eficientes para problemas de dimensões e não-linearidades moderadas. Já técnicas de simulação sempre permitiram a solução de problemas de grandes dimensões e fortemente não lineares, embora o custo computacional possa ser uma séria limitação. Com o avanço da capacidade de processamento dos computadores e com o desenvolvimento de técnicas de amostragem inteligente, a simulação de Monte Carlo passa a ser cada vez mais viável. Este trabalho tem por objetivo estudar e programar em computador técnicas de amostragem inteligente em simulação de Monte Carlo. O StRAnD é um programa de computador que já possui implementadas as técnicas de simulação de Monte Carlo Bruto e com Amostragem por Importância, ambas utilizando a Amostragem Simples na geração das variáveis básicas. Assim, são adicionadas, ao StRAnD, as técnicas de Amostragem Assintótica, Amostragem Melhorada e Simulação de Subconjuntos. Além disso, são programadas as técnicas de Amostragem por Hipercubo Latino e Amostragem por Variáveis Antitéticas. Nesta dissertação, são analisados seis problemas distintos, de forma que as vantagens e desvantagens de cada técnica sejam avaliadas, em termos da probabilidade de falha, do coeficiente de variação da probabilidade de falha, do erro relativo da probabilidade de falha e do tempo de processamento.
id USP_d9c66bd98531a5f51a79febd0585a784
oai_identifier_str oai:teses.usp.br:tde-02042014-150820
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Técnicas de amostragem inteligente em simulação de Monte CarloIntelligent sampling techniques in Monte Carlo simulationAmostragem inteligenteConfiabilidade de estruturasIntelligent samplingMétodo de Monte CarloMonte Carlo methodStructural reliabilityA confiabilidade de estruturas apresenta sólidos desenvolvimentos teóricos e crescentes aplicações práticas. Durante os últimos anos, avanços significativos foram obtidos em termos dos métodos de transformação (FORM, SORM), bem como em termos das técnicas de simulação de Monte Carlo. Métodos de transformação se mostraram eficientes para problemas de dimensões e não-linearidades moderadas. Já técnicas de simulação sempre permitiram a solução de problemas de grandes dimensões e fortemente não lineares, embora o custo computacional possa ser uma séria limitação. Com o avanço da capacidade de processamento dos computadores e com o desenvolvimento de técnicas de amostragem inteligente, a simulação de Monte Carlo passa a ser cada vez mais viável. Este trabalho tem por objetivo estudar e programar em computador técnicas de amostragem inteligente em simulação de Monte Carlo. O StRAnD é um programa de computador que já possui implementadas as técnicas de simulação de Monte Carlo Bruto e com Amostragem por Importância, ambas utilizando a Amostragem Simples na geração das variáveis básicas. Assim, são adicionadas, ao StRAnD, as técnicas de Amostragem Assintótica, Amostragem Melhorada e Simulação de Subconjuntos. Além disso, são programadas as técnicas de Amostragem por Hipercubo Latino e Amostragem por Variáveis Antitéticas. Nesta dissertação, são analisados seis problemas distintos, de forma que as vantagens e desvantagens de cada técnica sejam avaliadas, em termos da probabilidade de falha, do coeficiente de variação da probabilidade de falha, do erro relativo da probabilidade de falha e do tempo de processamento.The structural reliability presents solid theoretical developments and increasing practical applications. During the past few years, significant advances were achieved in terms of transformation methods (FORM and SORM), as well as, in terms of Monte Carlo Simulation. Transformation methods are effective in problems with moderate dimensions and moderate nonlinearities. On the other hand, simulation techniques can be used to solve high-dimensional problems and highly nonlinear problems, although the computational cost could be a serious limitation. With the progress of computer processing capacity and with the development of intelligent sampling techniques, the Monte Carlo Simulation becomes increasingly feasible. This work aims to study and program intelligent sampling techniques in Monte Carlo simulation. The StRAnD (Structural Reliability Analysis and Design) software already has Crude Monte Carlo and Importance Sampling Monte Carlo, both using Simple Sampling as basic samples generator. Thus, the Asymptotic Sampling technique, the Enhanced Sampling technique and the Subset Simulation were added to the software. Moreover, the Latin Hypercube Sampling technique and the Antithetic Variates techniques were also added to the software. Six problems were evaluated in order to evaluate the advantages and disadvantages of each technique, in terms of probability of failure, coefficient of variation of the probability of failure, relative error and processing time.Biblioteca Digitais de Teses e Dissertações da USPBeck, André TeófiloSantos, Ketson Roberto Maximiano dos2014-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18134/tde-02042014-150820/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-02042014-150820Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Técnicas de amostragem inteligente em simulação de Monte Carlo
Intelligent sampling techniques in Monte Carlo simulation
title Técnicas de amostragem inteligente em simulação de Monte Carlo
spellingShingle Técnicas de amostragem inteligente em simulação de Monte Carlo
Santos, Ketson Roberto Maximiano dos
Amostragem inteligente
Confiabilidade de estruturas
Intelligent sampling
Método de Monte Carlo
Monte Carlo method
Structural reliability
title_short Técnicas de amostragem inteligente em simulação de Monte Carlo
title_full Técnicas de amostragem inteligente em simulação de Monte Carlo
title_fullStr Técnicas de amostragem inteligente em simulação de Monte Carlo
title_full_unstemmed Técnicas de amostragem inteligente em simulação de Monte Carlo
title_sort Técnicas de amostragem inteligente em simulação de Monte Carlo
author Santos, Ketson Roberto Maximiano dos
author_facet Santos, Ketson Roberto Maximiano dos
author_role author
dc.contributor.none.fl_str_mv Beck, André Teófilo
dc.contributor.author.fl_str_mv Santos, Ketson Roberto Maximiano dos
dc.subject.por.fl_str_mv Amostragem inteligente
Confiabilidade de estruturas
Intelligent sampling
Método de Monte Carlo
Monte Carlo method
Structural reliability
topic Amostragem inteligente
Confiabilidade de estruturas
Intelligent sampling
Método de Monte Carlo
Monte Carlo method
Structural reliability
description A confiabilidade de estruturas apresenta sólidos desenvolvimentos teóricos e crescentes aplicações práticas. Durante os últimos anos, avanços significativos foram obtidos em termos dos métodos de transformação (FORM, SORM), bem como em termos das técnicas de simulação de Monte Carlo. Métodos de transformação se mostraram eficientes para problemas de dimensões e não-linearidades moderadas. Já técnicas de simulação sempre permitiram a solução de problemas de grandes dimensões e fortemente não lineares, embora o custo computacional possa ser uma séria limitação. Com o avanço da capacidade de processamento dos computadores e com o desenvolvimento de técnicas de amostragem inteligente, a simulação de Monte Carlo passa a ser cada vez mais viável. Este trabalho tem por objetivo estudar e programar em computador técnicas de amostragem inteligente em simulação de Monte Carlo. O StRAnD é um programa de computador que já possui implementadas as técnicas de simulação de Monte Carlo Bruto e com Amostragem por Importância, ambas utilizando a Amostragem Simples na geração das variáveis básicas. Assim, são adicionadas, ao StRAnD, as técnicas de Amostragem Assintótica, Amostragem Melhorada e Simulação de Subconjuntos. Além disso, são programadas as técnicas de Amostragem por Hipercubo Latino e Amostragem por Variáveis Antitéticas. Nesta dissertação, são analisados seis problemas distintos, de forma que as vantagens e desvantagens de cada técnica sejam avaliadas, em termos da probabilidade de falha, do coeficiente de variação da probabilidade de falha, do erro relativo da probabilidade de falha e do tempo de processamento.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18134/tde-02042014-150820/
url http://www.teses.usp.br/teses/disponiveis/18/18134/tde-02042014-150820/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256602950762496