Relações min-max em otimização combinatória

Detalhes bibliográficos
Autor(a) principal: de Carli Silva, Marcel Kenji
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-08052007-182205/
Resumo: Relações min-max são objetos centrais em otimização combinatória. Elas basicamente afirmam que, numa dada estrutura, o valor ótimo de um certo problema de minimização é igual ao valor ótimo de um outro problema de maximização. Relações desse tipo fornecem boas caracterizações e descrições poliédricas para diversos problemas importantes, além de geralmente virem acompanhadas de algoritmos eficientes para os problemas em questão. Muitas vezes, tais algoritmos eficientes são obtidos naturalmente das provas construtivas dessas relações; mesmo quando isso não ocorre, essas relações revelam o suficiente sobre a estrutura combinatória dos problemas, levando ao desenvolvimento de algoritmos eficientes. O foco principal desta dissertação é o estudo dessas relações em grafos. Nossa ênfase é sobre grafos orientados. Apresentamos o poderoso arcabouço poliédrico de Edmonds e Giles envolvendo fluxos submodulares, bem como o algoritmo de Frank para um caso especial desse arcabouço: o teorema de Lucchesi-Younger. Derivamos também diversas relações min-max sobre o empacotamento de conectores, desde o teorema de ramificações disjuntas de Edmonds até o teorema de junções disjuntas de Feofiloff-Younger e Schrijver. Apresentamos também uma resenha completa sobre as conjecturas de Woodall e sua versão capacitada, conhecida como conjectura de Edmonds-Giles. Derivamos ainda algumas relações min-max clássicas sobre emparelhamentos, T-junções e S-caminhos. Para tanto, usamos um teorema de Frank, Tardos e Sebö e um arcabouço bastante geral devido a Chudnovsky, Geelen, Gerards, Goddyn, Lohman e Seymour. Ao longo do texto, ilustramos vários aspectos recorrentes, como o uso de ferramentas da combinatória poliédrica, a técnica do descruzamento, o uso de funções submodulares, matróides e propriedades de troca, bem como alguns resultados envolvendo subestruturas proibidas.
id USP_da6ba0b377bd40f853ddc0679700eae7
oai_identifier_str oai:teses.usp.br:tde-08052007-182205
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Relações min-max em otimização combinatóriaMin-max Relations in Combinatorial Optimizationcombinatorial optimizationgraph theorymin-max relationsotimização combinatóriarelações min-maxteoria dos grafosRelações min-max são objetos centrais em otimização combinatória. Elas basicamente afirmam que, numa dada estrutura, o valor ótimo de um certo problema de minimização é igual ao valor ótimo de um outro problema de maximização. Relações desse tipo fornecem boas caracterizações e descrições poliédricas para diversos problemas importantes, além de geralmente virem acompanhadas de algoritmos eficientes para os problemas em questão. Muitas vezes, tais algoritmos eficientes são obtidos naturalmente das provas construtivas dessas relações; mesmo quando isso não ocorre, essas relações revelam o suficiente sobre a estrutura combinatória dos problemas, levando ao desenvolvimento de algoritmos eficientes. O foco principal desta dissertação é o estudo dessas relações em grafos. Nossa ênfase é sobre grafos orientados. Apresentamos o poderoso arcabouço poliédrico de Edmonds e Giles envolvendo fluxos submodulares, bem como o algoritmo de Frank para um caso especial desse arcabouço: o teorema de Lucchesi-Younger. Derivamos também diversas relações min-max sobre o empacotamento de conectores, desde o teorema de ramificações disjuntas de Edmonds até o teorema de junções disjuntas de Feofiloff-Younger e Schrijver. Apresentamos também uma resenha completa sobre as conjecturas de Woodall e sua versão capacitada, conhecida como conjectura de Edmonds-Giles. Derivamos ainda algumas relações min-max clássicas sobre emparelhamentos, T-junções e S-caminhos. Para tanto, usamos um teorema de Frank, Tardos e Sebö e um arcabouço bastante geral devido a Chudnovsky, Geelen, Gerards, Goddyn, Lohman e Seymour. Ao longo do texto, ilustramos vários aspectos recorrentes, como o uso de ferramentas da combinatória poliédrica, a técnica do descruzamento, o uso de funções submodulares, matróides e propriedades de troca, bem como alguns resultados envolvendo subestruturas proibidas.Min-max relations are central objects in combinatorial optimization. They basically state that, in a given structure, the optimum value of a certain minimization problem equals the optimum value of a different, maximization problem. Relations of this kind provide good characterizations and polyhedral descriptions to several important problems and, moreover, they often come with efficient algorithms for the corresponding problems. Usually, such efficient algorithms are obtained naturally from the constructive proofs involved; even when that is not the case, these relations reveal enough of the combinatorial structure of the problem, leading to the development of efficient algorithms. The main focus of this dissertation is the study of these relations in graphs. Our emphasis is on directed graphs. We present Edmonds and Giles\' powerful polyhedral framework concerning submodular flows, as well as Frank\'s algorithm for a special case of this framework: the Lucchesi-Younger Theorem. We also derive several min-max relations about packing connectors, starting with Edmonds\' Disjoint Branchings Theorem and ending with Feofiloff-Younger and Schrijver\'s Disjoint Dijoins Theorem. We further derive some classical min-max relations on matchings, T-joins and S-paths. To this end, we use a theorem due to Frank, Tardos, and Sebö and a general framework due to Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and Seymour. Throughout the text, we illustrate several recurrent themes, such as the use of tools from polyhedral combinatorics, the uncrossing technique, the use of submodular functions, matroids and exchange properties, as well as some results involving forbidden substructures.Biblioteca Digitais de Teses e Dissertações da USPWakabayashi, Yoshikode Carli Silva, Marcel Kenji2007-04-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-08052007-182205/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-08052007-182205Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Relações min-max em otimização combinatória
Min-max Relations in Combinatorial Optimization
title Relações min-max em otimização combinatória
spellingShingle Relações min-max em otimização combinatória
de Carli Silva, Marcel Kenji
combinatorial optimization
graph theory
min-max relations
otimização combinatória
relações min-max
teoria dos grafos
title_short Relações min-max em otimização combinatória
title_full Relações min-max em otimização combinatória
title_fullStr Relações min-max em otimização combinatória
title_full_unstemmed Relações min-max em otimização combinatória
title_sort Relações min-max em otimização combinatória
author de Carli Silva, Marcel Kenji
author_facet de Carli Silva, Marcel Kenji
author_role author
dc.contributor.none.fl_str_mv Wakabayashi, Yoshiko
dc.contributor.author.fl_str_mv de Carli Silva, Marcel Kenji
dc.subject.por.fl_str_mv combinatorial optimization
graph theory
min-max relations
otimização combinatória
relações min-max
teoria dos grafos
topic combinatorial optimization
graph theory
min-max relations
otimização combinatória
relações min-max
teoria dos grafos
description Relações min-max são objetos centrais em otimização combinatória. Elas basicamente afirmam que, numa dada estrutura, o valor ótimo de um certo problema de minimização é igual ao valor ótimo de um outro problema de maximização. Relações desse tipo fornecem boas caracterizações e descrições poliédricas para diversos problemas importantes, além de geralmente virem acompanhadas de algoritmos eficientes para os problemas em questão. Muitas vezes, tais algoritmos eficientes são obtidos naturalmente das provas construtivas dessas relações; mesmo quando isso não ocorre, essas relações revelam o suficiente sobre a estrutura combinatória dos problemas, levando ao desenvolvimento de algoritmos eficientes. O foco principal desta dissertação é o estudo dessas relações em grafos. Nossa ênfase é sobre grafos orientados. Apresentamos o poderoso arcabouço poliédrico de Edmonds e Giles envolvendo fluxos submodulares, bem como o algoritmo de Frank para um caso especial desse arcabouço: o teorema de Lucchesi-Younger. Derivamos também diversas relações min-max sobre o empacotamento de conectores, desde o teorema de ramificações disjuntas de Edmonds até o teorema de junções disjuntas de Feofiloff-Younger e Schrijver. Apresentamos também uma resenha completa sobre as conjecturas de Woodall e sua versão capacitada, conhecida como conjectura de Edmonds-Giles. Derivamos ainda algumas relações min-max clássicas sobre emparelhamentos, T-junções e S-caminhos. Para tanto, usamos um teorema de Frank, Tardos e Sebö e um arcabouço bastante geral devido a Chudnovsky, Geelen, Gerards, Goddyn, Lohman e Seymour. Ao longo do texto, ilustramos vários aspectos recorrentes, como o uso de ferramentas da combinatória poliédrica, a técnica do descruzamento, o uso de funções submodulares, matróides e propriedades de troca, bem como alguns resultados envolvendo subestruturas proibidas.
publishDate 2007
dc.date.none.fl_str_mv 2007-04-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-08052007-182205/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-08052007-182205/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256799636357120