Simulações de pesos espaciais para o modelo STARMA e aplicações

Detalhes bibliográficos
Autor(a) principal: Biz, Guilherme
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-15092014-123217/
Resumo: A modelagem de processos espaço-temporais é de suma importância para dados climatológicos, visto que o clima sofre influência temporal e espacial. A classe de modelos STARMA, autorregressivo e de médias móveis espaço-temporal, adequa-se a esses processos, porém, não há, na literatura, um estudo sobre o melhor método para quantificar a dependência espacial, e não é sabido se há uma diferença entre os métodos para esses modelos. Logo, neste trabalho, é realizado um estudo de simulações do modelo STAR, utilizando-se diferentes formas para obter os pesos espaciais. Após concluir as simulações é realizado o ajuste de um modelo STARIMA para um conjunto de dados de médias mensais de temperaturas mínimas diárias coletadas em uma mesorregião localizada no Oeste do Estado do Paraná. Este trabalho é separado em dois artigos e ambos são realizados utilizando-se o programa R. O primeiro é o estudo de simulações, chegando-se à conclusão de que o método para determinar a dependência espacial interfere no resultado da modelagem e depende da região em estudo. No segundo artigo, conclui-se que o inverso da distância é a melhor opção para a matriz de pesos e um modelo STARIMA sazonal tem o melhor ajuste para o conjunto de dados em questão.
id USP_dbb2547d7b4477cd41a009c8b4d47cbb
oai_identifier_str oai:teses.usp.br:tde-15092014-123217
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Simulações de pesos espaciais para o modelo STARMA e aplicaçõesSimulations of spatial weights for STARMA model and applicationsAutoregressiveAutorregressivoEspaço-temporalforecastMédias móveismoving averagePesos espaciaisPrevisõesspatial weightsspatio-temporalTemperaturatemperatureA modelagem de processos espaço-temporais é de suma importância para dados climatológicos, visto que o clima sofre influência temporal e espacial. A classe de modelos STARMA, autorregressivo e de médias móveis espaço-temporal, adequa-se a esses processos, porém, não há, na literatura, um estudo sobre o melhor método para quantificar a dependência espacial, e não é sabido se há uma diferença entre os métodos para esses modelos. Logo, neste trabalho, é realizado um estudo de simulações do modelo STAR, utilizando-se diferentes formas para obter os pesos espaciais. Após concluir as simulações é realizado o ajuste de um modelo STARIMA para um conjunto de dados de médias mensais de temperaturas mínimas diárias coletadas em uma mesorregião localizada no Oeste do Estado do Paraná. Este trabalho é separado em dois artigos e ambos são realizados utilizando-se o programa R. O primeiro é o estudo de simulações, chegando-se à conclusão de que o método para determinar a dependência espacial interfere no resultado da modelagem e depende da região em estudo. No segundo artigo, conclui-se que o inverso da distância é a melhor opção para a matriz de pesos e um modelo STARIMA sazonal tem o melhor ajuste para o conjunto de dados em questão.Process modeling spatio-temporal is of great importance for climatological data, once that the climate undergoes spatial and temporal influence. The class of models STARMA, autoregressive models and spatio-temporal moving averages, are suitable to the these processes, however, for these models, there is not a study about the best method to quantify the spatial dependence, and/or it is not known whether there is a difference between the methods for these models. In this thesis, a study simulations of the STAR model using different forms for the spatial weights is performed. After the simulation procedure, the STARIMA model is fitted to the real dataset of monthly mean daily minimum temperatures collected in a mesoregion located to the west of the state of Paraná. This thesis is separated into two papers and both are performed using the statistical software R. The first one is the simulation study that concludes that the method for determining the spatial dependence interferes with results of the modeling and depends on the region under study. In the second paper, it is concluded that the inverse distance is the best option for the weight matrix and a seasonal STARIMA model has the best fit for the data set.Biblioteca Digitais de Teses e Dissertações da USPOzaki, Vitor AugustoBiz, Guilherme2014-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-15092014-123217/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-15092014-123217Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Simulações de pesos espaciais para o modelo STARMA e aplicações
Simulations of spatial weights for STARMA model and applications
title Simulações de pesos espaciais para o modelo STARMA e aplicações
spellingShingle Simulações de pesos espaciais para o modelo STARMA e aplicações
Biz, Guilherme
Autoregressive
Autorregressivo
Espaço-temporal
forecast
Médias móveis
moving average
Pesos espaciais
Previsões
spatial weights
spatio-temporal
Temperatura
temperature
title_short Simulações de pesos espaciais para o modelo STARMA e aplicações
title_full Simulações de pesos espaciais para o modelo STARMA e aplicações
title_fullStr Simulações de pesos espaciais para o modelo STARMA e aplicações
title_full_unstemmed Simulações de pesos espaciais para o modelo STARMA e aplicações
title_sort Simulações de pesos espaciais para o modelo STARMA e aplicações
author Biz, Guilherme
author_facet Biz, Guilherme
author_role author
dc.contributor.none.fl_str_mv Ozaki, Vitor Augusto
dc.contributor.author.fl_str_mv Biz, Guilherme
dc.subject.por.fl_str_mv Autoregressive
Autorregressivo
Espaço-temporal
forecast
Médias móveis
moving average
Pesos espaciais
Previsões
spatial weights
spatio-temporal
Temperatura
temperature
topic Autoregressive
Autorregressivo
Espaço-temporal
forecast
Médias móveis
moving average
Pesos espaciais
Previsões
spatial weights
spatio-temporal
Temperatura
temperature
description A modelagem de processos espaço-temporais é de suma importância para dados climatológicos, visto que o clima sofre influência temporal e espacial. A classe de modelos STARMA, autorregressivo e de médias móveis espaço-temporal, adequa-se a esses processos, porém, não há, na literatura, um estudo sobre o melhor método para quantificar a dependência espacial, e não é sabido se há uma diferença entre os métodos para esses modelos. Logo, neste trabalho, é realizado um estudo de simulações do modelo STAR, utilizando-se diferentes formas para obter os pesos espaciais. Após concluir as simulações é realizado o ajuste de um modelo STARIMA para um conjunto de dados de médias mensais de temperaturas mínimas diárias coletadas em uma mesorregião localizada no Oeste do Estado do Paraná. Este trabalho é separado em dois artigos e ambos são realizados utilizando-se o programa R. O primeiro é o estudo de simulações, chegando-se à conclusão de que o método para determinar a dependência espacial interfere no resultado da modelagem e depende da região em estudo. No segundo artigo, conclui-se que o inverso da distância é a melhor opção para a matriz de pesos e um modelo STARIMA sazonal tem o melhor ajuste para o conjunto de dados em questão.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-15092014-123217/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-15092014-123217/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257030052544512