MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-145713/ |
Resumo: | A predição de estruturas de proteínas é um campo de pesquisa que busca simular o enovelamento de cadeias de aminoácidos de forma a descobrir as funções das proteínas na natureza, um processo altamente dispendioso por meio de métodos in vivo. Inserida no contexto da Bioinformática, é uma das tarefas mais computacionalmente custosas e desafiadoras da atualidade. Devido à complexidade, muitas pesquisas se utilizam de gateways científicos para disponibilização de ferramentas de execução e análise desses experimentos, aliado ao uso de workflows científicos para organização de tarefas e disponibilização de informações. No entanto, esses gateways podem enfrentar gargalos de desempenho e falhas estruturais, produzindo resultados de baixa qualidade. Para atuar nesse contexto multifacetado e oferecer alternativas para algumas das limitações, esta tese propõe uma arquitetura modular baseada nos conceitos de Service Oriented Architecture (SOA) para oferta de recursos computacionais em gateways científicos, com foco nos experimentos de Protein Structure Prediction (PSP). A Arquitetura Modular Distribuída para auxílio à Predição de Estruturas de Proteínas (MDAPSP) é descrita conceitualmente e validada em um modelo de simulação computacional, no qual se pode identificar suas capacidades, detalhar o funcionamento de seus módulos e destacar seu potencial. A avaliação experimental demonstra a qualidade dos algoritmos propostos, ampliando a capacidade de atendimento de um gateway científico, reduzindo o tempo necessário para experimentos de predição e lançando as bases para o protótipo de uma arquitetura funcional. Os módulos desenvolvidos alcançam boa capacidade de otimização de experimentos de PSP em ambientes distribuídos e constituem uma novidade no modelo de provisionamento de recursos para gateways científicos. |
id |
USP_dbbabde64148040ad85bc9933cd3e209 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18102018-145713 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínasMDAPSP - A modular distributed architecture to support the protein structure predictionArquiteturas orientadas a serviçoGateways científicosPredição de estruturas de proteínasProtein structure predictionScientifc workflowsScientific gatewaysService oriented architecturesWorkflows científicosWorkflowSimWorkflowSimA predição de estruturas de proteínas é um campo de pesquisa que busca simular o enovelamento de cadeias de aminoácidos de forma a descobrir as funções das proteínas na natureza, um processo altamente dispendioso por meio de métodos in vivo. Inserida no contexto da Bioinformática, é uma das tarefas mais computacionalmente custosas e desafiadoras da atualidade. Devido à complexidade, muitas pesquisas se utilizam de gateways científicos para disponibilização de ferramentas de execução e análise desses experimentos, aliado ao uso de workflows científicos para organização de tarefas e disponibilização de informações. No entanto, esses gateways podem enfrentar gargalos de desempenho e falhas estruturais, produzindo resultados de baixa qualidade. Para atuar nesse contexto multifacetado e oferecer alternativas para algumas das limitações, esta tese propõe uma arquitetura modular baseada nos conceitos de Service Oriented Architecture (SOA) para oferta de recursos computacionais em gateways científicos, com foco nos experimentos de Protein Structure Prediction (PSP). A Arquitetura Modular Distribuída para auxílio à Predição de Estruturas de Proteínas (MDAPSP) é descrita conceitualmente e validada em um modelo de simulação computacional, no qual se pode identificar suas capacidades, detalhar o funcionamento de seus módulos e destacar seu potencial. A avaliação experimental demonstra a qualidade dos algoritmos propostos, ampliando a capacidade de atendimento de um gateway científico, reduzindo o tempo necessário para experimentos de predição e lançando as bases para o protótipo de uma arquitetura funcional. Os módulos desenvolvidos alcançam boa capacidade de otimização de experimentos de PSP em ambientes distribuídos e constituem uma novidade no modelo de provisionamento de recursos para gateways científicos.PSP is a scientific process that simulates the folding of amino acid chains to discover the function of a protein in live organisms, considering that its an expensive process to be done by in vivo methods. PSP is a computationally demanding and challenging effort in the Bioinformatics stateof- the-art. Many works use scientific gateways to provide tools for execution and analysis of such experiments, along with scientific workflows to organize tasks and to share information. However, these gateways can suffer performance bottlenecks and structural failures, producing low quality results. With the goal of offering alternatives to some of the limitations and considering the complexity of the topics involved, this thesis proposes a modular architecture based on SOA concepts to provide computing resources to scientific gateways, with focus on PSP experiments. The Modular Distributed Architecture to support Protein Structure Prediction (MDAPSP) is described conceptually and validated in a computer simulation model that explain its capabilities, detail the modules operation and highlight its potential. The performance evaluation presents the quality of the proposed algorithms, a reduction of response time in PSP experiments and prove the benefits of the novel algorithms, establishing the basis for a prototype. The new modules can optmize the PSP experiments in distributed environments and are a innovation in the resource provisioning model for scientific gateways.Biblioteca Digitais de Teses e Dissertações da USPEstrella, Júlio CezarOliveira, Edvard Martins de2018-05-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-145713/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-11-01T16:25:01Zoai:teses.usp.br:tde-18102018-145713Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-11-01T16:25:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas MDAPSP - A modular distributed architecture to support the protein structure prediction |
title |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas |
spellingShingle |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas Oliveira, Edvard Martins de Arquiteturas orientadas a serviço Gateways científicos Predição de estruturas de proteínas Protein structure prediction Scientifc workflows Scientific gateways Service oriented architectures Workflows científicos WorkflowSim WorkflowSim |
title_short |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas |
title_full |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas |
title_fullStr |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas |
title_full_unstemmed |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas |
title_sort |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas |
author |
Oliveira, Edvard Martins de |
author_facet |
Oliveira, Edvard Martins de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Estrella, Júlio Cezar |
dc.contributor.author.fl_str_mv |
Oliveira, Edvard Martins de |
dc.subject.por.fl_str_mv |
Arquiteturas orientadas a serviço Gateways científicos Predição de estruturas de proteínas Protein structure prediction Scientifc workflows Scientific gateways Service oriented architectures Workflows científicos WorkflowSim WorkflowSim |
topic |
Arquiteturas orientadas a serviço Gateways científicos Predição de estruturas de proteínas Protein structure prediction Scientifc workflows Scientific gateways Service oriented architectures Workflows científicos WorkflowSim WorkflowSim |
description |
A predição de estruturas de proteínas é um campo de pesquisa que busca simular o enovelamento de cadeias de aminoácidos de forma a descobrir as funções das proteínas na natureza, um processo altamente dispendioso por meio de métodos in vivo. Inserida no contexto da Bioinformática, é uma das tarefas mais computacionalmente custosas e desafiadoras da atualidade. Devido à complexidade, muitas pesquisas se utilizam de gateways científicos para disponibilização de ferramentas de execução e análise desses experimentos, aliado ao uso de workflows científicos para organização de tarefas e disponibilização de informações. No entanto, esses gateways podem enfrentar gargalos de desempenho e falhas estruturais, produzindo resultados de baixa qualidade. Para atuar nesse contexto multifacetado e oferecer alternativas para algumas das limitações, esta tese propõe uma arquitetura modular baseada nos conceitos de Service Oriented Architecture (SOA) para oferta de recursos computacionais em gateways científicos, com foco nos experimentos de Protein Structure Prediction (PSP). A Arquitetura Modular Distribuída para auxílio à Predição de Estruturas de Proteínas (MDAPSP) é descrita conceitualmente e validada em um modelo de simulação computacional, no qual se pode identificar suas capacidades, detalhar o funcionamento de seus módulos e destacar seu potencial. A avaliação experimental demonstra a qualidade dos algoritmos propostos, ampliando a capacidade de atendimento de um gateway científico, reduzindo o tempo necessário para experimentos de predição e lançando as bases para o protótipo de uma arquitetura funcional. Os módulos desenvolvidos alcançam boa capacidade de otimização de experimentos de PSP em ambientes distribuídos e constituem uma novidade no modelo de provisionamento de recursos para gateways científicos. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-145713/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-145713/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257114816282624 |