Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.

Detalhes bibliográficos
Autor(a) principal: Furuie, Sérgio Shiguemi
Data de Publicação: 1990
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-14122017-111814/
Resumo: A reconstrução tomográfica de imagens com ruído Poisson tem grandes aplicações em medicina nuclear. A demanda por informações mais complexas, como por exemplo, várias secções de um órgão, e a necessidade de reduzir a dosagem radioativa a que o paciente é submetido, requerem métodos adequados para a reconstrução de imagem com baixa contagem, no caso, baixa relação sinal/ruído. A abordagem estatística, utilizando a máxima verossimilhança (ML) e o algoritmo Expectation-Maximization (EM), produz melhores resultados do que os métodos tradicionais, pois incorpora a natureza estatística do ruído no seu modelo. A presente tese apresenta uma solução alternativa, considerando também o modelo de ruído Poisson, que produz resultados comparáveis ao do ML-EM, porém com custo computacional bem menor. A metodologia proposta consiste, basicamente, em se estimar as projeções considerando o modelo de formação das projeções ruidosas, antes do processo da reconstrução. São discutidos vários estimadores otimizados, inclusive Bayesianos. Em especial, é mostrado que a transformação de ruído Poisson em ruído aditivo Gaussiano e independente do sinal (transformação de Anscombe), conjugada à estimativa, produz bons resultados. Se as projeções puderem ser consideradas, aproximadamente, transformadas de Radon da imagem a ser reconstruída, então pode ser aplicado um dos métodos da transformada para a reconstrução tomográfica. Dentre estes métodos, o da aplicação direta da transformada de Fourier foi avaliado mais detalhadamente devido ao seu grande potencial para reconstruções rápidas com processamento vetorial e processamento paralelo. A avaliação do método proposto foi realizada através de simulações, onde foram geradas as imagens originais e as projeções com ruído Poisson. Os resultados foramcomparados com métodos clássicos como a filtragem-retroprojeção, o ART e o ML-EM. Em particular, a transformação de Anscombe conjungada ao estimador heurístico (filtro de Maeda), mostrou resultados próximos aos do ML-EM, porém com tempo de processamento bem menor. Os resultados obtidos mostram a viabilidade da presente proposta vir a ser utilizada em aplicações clínicas na medicina nuclear.
id USP_dcad82961375d1bbe1811011417f1bb8
oai_identifier_str oai:teses.usp.br:tde-14122017-111814
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.Tomographic reconstruction of images with Poisson noise: projection estimation.Filtro das projeçõesPoisson noiseProjection filteringRuído poissonTomografiaTomographyA reconstrução tomográfica de imagens com ruído Poisson tem grandes aplicações em medicina nuclear. A demanda por informações mais complexas, como por exemplo, várias secções de um órgão, e a necessidade de reduzir a dosagem radioativa a que o paciente é submetido, requerem métodos adequados para a reconstrução de imagem com baixa contagem, no caso, baixa relação sinal/ruído. A abordagem estatística, utilizando a máxima verossimilhança (ML) e o algoritmo Expectation-Maximization (EM), produz melhores resultados do que os métodos tradicionais, pois incorpora a natureza estatística do ruído no seu modelo. A presente tese apresenta uma solução alternativa, considerando também o modelo de ruído Poisson, que produz resultados comparáveis ao do ML-EM, porém com custo computacional bem menor. A metodologia proposta consiste, basicamente, em se estimar as projeções considerando o modelo de formação das projeções ruidosas, antes do processo da reconstrução. São discutidos vários estimadores otimizados, inclusive Bayesianos. Em especial, é mostrado que a transformação de ruído Poisson em ruído aditivo Gaussiano e independente do sinal (transformação de Anscombe), conjugada à estimativa, produz bons resultados. Se as projeções puderem ser consideradas, aproximadamente, transformadas de Radon da imagem a ser reconstruída, então pode ser aplicado um dos métodos da transformada para a reconstrução tomográfica. Dentre estes métodos, o da aplicação direta da transformada de Fourier foi avaliado mais detalhadamente devido ao seu grande potencial para reconstruções rápidas com processamento vetorial e processamento paralelo. A avaliação do método proposto foi realizada através de simulações, onde foram geradas as imagens originais e as projeções com ruído Poisson. Os resultados foramcomparados com métodos clássicos como a filtragem-retroprojeção, o ART e o ML-EM. Em particular, a transformação de Anscombe conjungada ao estimador heurístico (filtro de Maeda), mostrou resultados próximos aos do ML-EM, porém com tempo de processamento bem menor. Os resultados obtidos mostram a viabilidade da presente proposta vir a ser utilizada em aplicações clínicas na medicina nuclear.Tomographic reconstruction of images with Poisson noise is in important problem in nuclear medicine. The need for more complete information, like the reconstruction of several sections of an organ, and the necessity to reduce patient absorbed radioactivity, suggest better methods to reconstruct images with low-count and low signal-to-noise ratio. Statistical approaches using Maximum Likelihood (ML) and the Expectation-Maximization (EM) algorithm lead to better results than classical methods, since ML-EM considers in its model the stochastic nature of the noise. This thesis presents an alternative solution, also using a Poisson noise model, that produces similar results as compared to ML-EM, but with much less computational cost. The proposed technique basically consists of projection estimation before reconstruction, taking into account a model for the formation of the noisy projections. Several optimal and Bayesian estimators are analysed. It is shown that the transformation of Poisson noise into Gaussian additive and independent noise (Anscombe Transformation), followed by estimation, yields good results. If the projection can be assumed as Radon transform of the image to be reconstructed, then it is possible to reconstruct using one of the transform methods. Among these methods, the Direct Fourier Method was analysed in detail, due to its applicability for fast reconstruction using array processors and parallel processing. Computer simulations were used in order to access this proposed technique. Phantoms and phantom projections with Poisson noise were generated. The results were compared with traditional methods like Filtering-Backprojection, Algebraic Rconstruction Technique (ART) and ML-EM. Specifically, the Anscombe transformation together with a heuristic estimator (Maeda\'s filter) produced results comparable to ML-EM, but spending only a fraction of the processing time.Biblioteca Digitais de Teses e Dissertações da USPAutomáticos, ProcedimentosFuruie, Sérgio Shiguemi1990-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-14122017-111814/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-14122017-111814Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
Tomographic reconstruction of images with Poisson noise: projection estimation.
title Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
spellingShingle Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
Furuie, Sérgio Shiguemi
Filtro das projeções
Poisson noise
Projection filtering
Ruído poisson
Tomografia
Tomography
title_short Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
title_full Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
title_fullStr Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
title_full_unstemmed Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
title_sort Reconstrução tomográfica de imagens com rudo poisson: estimativa das projeções´.
author Furuie, Sérgio Shiguemi
author_facet Furuie, Sérgio Shiguemi
author_role author
dc.contributor.none.fl_str_mv Automáticos, Procedimentos
dc.contributor.author.fl_str_mv Furuie, Sérgio Shiguemi
dc.subject.por.fl_str_mv Filtro das projeções
Poisson noise
Projection filtering
Ruído poisson
Tomografia
Tomography
topic Filtro das projeções
Poisson noise
Projection filtering
Ruído poisson
Tomografia
Tomography
description A reconstrução tomográfica de imagens com ruído Poisson tem grandes aplicações em medicina nuclear. A demanda por informações mais complexas, como por exemplo, várias secções de um órgão, e a necessidade de reduzir a dosagem radioativa a que o paciente é submetido, requerem métodos adequados para a reconstrução de imagem com baixa contagem, no caso, baixa relação sinal/ruído. A abordagem estatística, utilizando a máxima verossimilhança (ML) e o algoritmo Expectation-Maximization (EM), produz melhores resultados do que os métodos tradicionais, pois incorpora a natureza estatística do ruído no seu modelo. A presente tese apresenta uma solução alternativa, considerando também o modelo de ruído Poisson, que produz resultados comparáveis ao do ML-EM, porém com custo computacional bem menor. A metodologia proposta consiste, basicamente, em se estimar as projeções considerando o modelo de formação das projeções ruidosas, antes do processo da reconstrução. São discutidos vários estimadores otimizados, inclusive Bayesianos. Em especial, é mostrado que a transformação de ruído Poisson em ruído aditivo Gaussiano e independente do sinal (transformação de Anscombe), conjugada à estimativa, produz bons resultados. Se as projeções puderem ser consideradas, aproximadamente, transformadas de Radon da imagem a ser reconstruída, então pode ser aplicado um dos métodos da transformada para a reconstrução tomográfica. Dentre estes métodos, o da aplicação direta da transformada de Fourier foi avaliado mais detalhadamente devido ao seu grande potencial para reconstruções rápidas com processamento vetorial e processamento paralelo. A avaliação do método proposto foi realizada através de simulações, onde foram geradas as imagens originais e as projeções com ruído Poisson. Os resultados foramcomparados com métodos clássicos como a filtragem-retroprojeção, o ART e o ML-EM. Em particular, a transformação de Anscombe conjungada ao estimador heurístico (filtro de Maeda), mostrou resultados próximos aos do ML-EM, porém com tempo de processamento bem menor. Os resultados obtidos mostram a viabilidade da presente proposta vir a ser utilizada em aplicações clínicas na medicina nuclear.
publishDate 1990
dc.date.none.fl_str_mv 1990-07-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-14122017-111814/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-14122017-111814/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256979149422592