A robust lasso regression for linear mixed-effects models with diagnostic analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/ |
Resumo: | Variable selection has been a topic of great interest for statisticians and researchers alike. The choice of the best subset of predictors may be carried out with the objective of improving prediction or for easier interpretation of results. However, such methods are not always straightforward, mainly in the context of linear mixed-effects models. Variable selection for such models must be carried out for both fixed and random effects, the first being related to the global mean of data and the second to subject-level variance. There are two possible approaches when selecting variables for mixed-effects models: joint or two-stage procedures. In existing literature on the topic of variable selection for linear mixed-effects model, there is a method of joint selection via lasso for linear mixed-effects models under a normal distribution. Another topic of remarkable importance, is diagnostics and residual analysis. While residual analyses are carried out to assess issues with the fitted model and identification of atypical observations, diagnostic analyses are carried out assuming the model as correct and, assessing its conclusions robustness to small disturbances in the data and/or the model. There are many possible ways to deal with such observations. One is using robust models, which are said to be robust to disturbances in the data. That is, models that are better fit to data sets that possess observations considered to be as outliers and/or leverage. This work aims to use the robust method for variable selection in linear mixed-effects model and compare it with the normal method using diagnostic analysis. |
id |
USP_dcc91888c09803d0756c87a1771d1182 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02012023-110804 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A robust lasso regression for linear mixed-effects models with diagnostic analysisRegressão lasso robusta para modelos lineares de efeitos mistos com análise de diagnósticoAnálise de regressãoDiagnósticoDiagnosticsLassoLassoMixed modelsModelos mistosModelos robustosRegression analysisRobust modelsVariable selection has been a topic of great interest for statisticians and researchers alike. The choice of the best subset of predictors may be carried out with the objective of improving prediction or for easier interpretation of results. However, such methods are not always straightforward, mainly in the context of linear mixed-effects models. Variable selection for such models must be carried out for both fixed and random effects, the first being related to the global mean of data and the second to subject-level variance. There are two possible approaches when selecting variables for mixed-effects models: joint or two-stage procedures. In existing literature on the topic of variable selection for linear mixed-effects model, there is a method of joint selection via lasso for linear mixed-effects models under a normal distribution. Another topic of remarkable importance, is diagnostics and residual analysis. While residual analyses are carried out to assess issues with the fitted model and identification of atypical observations, diagnostic analyses are carried out assuming the model as correct and, assessing its conclusions robustness to small disturbances in the data and/or the model. There are many possible ways to deal with such observations. One is using robust models, which are said to be robust to disturbances in the data. That is, models that are better fit to data sets that possess observations considered to be as outliers and/or leverage. This work aims to use the robust method for variable selection in linear mixed-effects model and compare it with the normal method using diagnostic analysis.Seleção de variáveis é um tópico de elevada importância para o processo de modelagem. A escolha do melhor conjunto de variáveis explicativas pode ser feita com o intuito de melhorar uma previsão ou facilitar a interpretação dos resultados. Contudo, os métodos para seleção de variáveis nem sempre são triviais, principalmente no contexto de modelos lineares de efeitos mistos. A seleção para esses modelos deve ser feita para os efeitos fixos, que estão relacionados a uma média global, e para os efeitos aleatórios, relacionados à variância a nível individual nesse contexto. São dois os tipos de abordagens para a seleção de variáveis em modelos de efeitos mistos: conjunta ou em dois estágios, havendo na literatura existente o processo de seleção conjunta via lasso para modelos lineares de efeitos-mistos normais. Outro tópico de elevada importância, é a análise de diagnóstico e resíduos. Enquanto as análises de resíduos são feitas para investigar problemas com o modelo ajustado e identificação de observações atípicas, uma análise de diagnóstico é feita assumindo o modelo como correto, e investigando a robustez das conclusões a pequenas perturbações dos dados e/ou no modelo. Para lidar com essas observações, são várias as alternativas. Uma delas, é a utilização de modelos robustos, os quais seriam ditos robustos a perturbações nos dados. Isto é, modelos que melhor se ajustam a conjuntos de dados que possuem pontos considerados como sendo outliers e/ou alavanca. Este trabalho tem como objetivo utilizar o método robusto para seleção de variáveis em modelos lineares de efeitos mistos e compará-lo com o método normal através de análise de diagnóstico.Biblioteca Digitais de Teses e Dissertações da USPNovelli, Cibele Maria RussoGarcia, Rafael Rocha de Oliveira2021-10-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-02T13:23:37Zoai:teses.usp.br:tde-02012023-110804Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-02T13:23:37Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A robust lasso regression for linear mixed-effects models with diagnostic analysis Regressão lasso robusta para modelos lineares de efeitos mistos com análise de diagnóstico |
title |
A robust lasso regression for linear mixed-effects models with diagnostic analysis |
spellingShingle |
A robust lasso regression for linear mixed-effects models with diagnostic analysis Garcia, Rafael Rocha de Oliveira Análise de regressão Diagnóstico Diagnostics Lasso Lasso Mixed models Modelos mistos Modelos robustos Regression analysis Robust models |
title_short |
A robust lasso regression for linear mixed-effects models with diagnostic analysis |
title_full |
A robust lasso regression for linear mixed-effects models with diagnostic analysis |
title_fullStr |
A robust lasso regression for linear mixed-effects models with diagnostic analysis |
title_full_unstemmed |
A robust lasso regression for linear mixed-effects models with diagnostic analysis |
title_sort |
A robust lasso regression for linear mixed-effects models with diagnostic analysis |
author |
Garcia, Rafael Rocha de Oliveira |
author_facet |
Garcia, Rafael Rocha de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Novelli, Cibele Maria Russo |
dc.contributor.author.fl_str_mv |
Garcia, Rafael Rocha de Oliveira |
dc.subject.por.fl_str_mv |
Análise de regressão Diagnóstico Diagnostics Lasso Lasso Mixed models Modelos mistos Modelos robustos Regression analysis Robust models |
topic |
Análise de regressão Diagnóstico Diagnostics Lasso Lasso Mixed models Modelos mistos Modelos robustos Regression analysis Robust models |
description |
Variable selection has been a topic of great interest for statisticians and researchers alike. The choice of the best subset of predictors may be carried out with the objective of improving prediction or for easier interpretation of results. However, such methods are not always straightforward, mainly in the context of linear mixed-effects models. Variable selection for such models must be carried out for both fixed and random effects, the first being related to the global mean of data and the second to subject-level variance. There are two possible approaches when selecting variables for mixed-effects models: joint or two-stage procedures. In existing literature on the topic of variable selection for linear mixed-effects model, there is a method of joint selection via lasso for linear mixed-effects models under a normal distribution. Another topic of remarkable importance, is diagnostics and residual analysis. While residual analyses are carried out to assess issues with the fitted model and identification of atypical observations, diagnostic analyses are carried out assuming the model as correct and, assessing its conclusions robustness to small disturbances in the data and/or the model. There are many possible ways to deal with such observations. One is using robust models, which are said to be robust to disturbances in the data. That is, models that are better fit to data sets that possess observations considered to be as outliers and/or leverage. This work aims to use the robust method for variable selection in linear mixed-effects model and compare it with the normal method using diagnostic analysis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256596797718528 |