A robust lasso regression for linear mixed-effects models with diagnostic analysis

Detalhes bibliográficos
Autor(a) principal: Garcia, Rafael Rocha de Oliveira
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/
Resumo: Variable selection has been a topic of great interest for statisticians and researchers alike. The choice of the best subset of predictors may be carried out with the objective of improving prediction or for easier interpretation of results. However, such methods are not always straightforward, mainly in the context of linear mixed-effects models. Variable selection for such models must be carried out for both fixed and random effects, the first being related to the global mean of data and the second to subject-level variance. There are two possible approaches when selecting variables for mixed-effects models: joint or two-stage procedures. In existing literature on the topic of variable selection for linear mixed-effects model, there is a method of joint selection via lasso for linear mixed-effects models under a normal distribution. Another topic of remarkable importance, is diagnostics and residual analysis. While residual analyses are carried out to assess issues with the fitted model and identification of atypical observations, diagnostic analyses are carried out assuming the model as correct and, assessing its conclusions robustness to small disturbances in the data and/or the model. There are many possible ways to deal with such observations. One is using robust models, which are said to be robust to disturbances in the data. That is, models that are better fit to data sets that possess observations considered to be as outliers and/or leverage. This work aims to use the robust method for variable selection in linear mixed-effects model and compare it with the normal method using diagnostic analysis.
id USP_dcc91888c09803d0756c87a1771d1182
oai_identifier_str oai:teses.usp.br:tde-02012023-110804
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling A robust lasso regression for linear mixed-effects models with diagnostic analysisRegressão lasso robusta para modelos lineares de efeitos mistos com análise de diagnósticoAnálise de regressãoDiagnósticoDiagnosticsLassoLassoMixed modelsModelos mistosModelos robustosRegression analysisRobust modelsVariable selection has been a topic of great interest for statisticians and researchers alike. The choice of the best subset of predictors may be carried out with the objective of improving prediction or for easier interpretation of results. However, such methods are not always straightforward, mainly in the context of linear mixed-effects models. Variable selection for such models must be carried out for both fixed and random effects, the first being related to the global mean of data and the second to subject-level variance. There are two possible approaches when selecting variables for mixed-effects models: joint or two-stage procedures. In existing literature on the topic of variable selection for linear mixed-effects model, there is a method of joint selection via lasso for linear mixed-effects models under a normal distribution. Another topic of remarkable importance, is diagnostics and residual analysis. While residual analyses are carried out to assess issues with the fitted model and identification of atypical observations, diagnostic analyses are carried out assuming the model as correct and, assessing its conclusions robustness to small disturbances in the data and/or the model. There are many possible ways to deal with such observations. One is using robust models, which are said to be robust to disturbances in the data. That is, models that are better fit to data sets that possess observations considered to be as outliers and/or leverage. This work aims to use the robust method for variable selection in linear mixed-effects model and compare it with the normal method using diagnostic analysis.Seleção de variáveis é um tópico de elevada importância para o processo de modelagem. A escolha do melhor conjunto de variáveis explicativas pode ser feita com o intuito de melhorar uma previsão ou facilitar a interpretação dos resultados. Contudo, os métodos para seleção de variáveis nem sempre são triviais, principalmente no contexto de modelos lineares de efeitos mistos. A seleção para esses modelos deve ser feita para os efeitos fixos, que estão relacionados a uma média global, e para os efeitos aleatórios, relacionados à variância a nível individual nesse contexto. São dois os tipos de abordagens para a seleção de variáveis em modelos de efeitos mistos: conjunta ou em dois estágios, havendo na literatura existente o processo de seleção conjunta via lasso para modelos lineares de efeitos-mistos normais. Outro tópico de elevada importância, é a análise de diagnóstico e resíduos. Enquanto as análises de resíduos são feitas para investigar problemas com o modelo ajustado e identificação de observações atípicas, uma análise de diagnóstico é feita assumindo o modelo como correto, e investigando a robustez das conclusões a pequenas perturbações dos dados e/ou no modelo. Para lidar com essas observações, são várias as alternativas. Uma delas, é a utilização de modelos robustos, os quais seriam ditos robustos a perturbações nos dados. Isto é, modelos que melhor se ajustam a conjuntos de dados que possuem pontos considerados como sendo outliers e/ou alavanca. Este trabalho tem como objetivo utilizar o método robusto para seleção de variáveis em modelos lineares de efeitos mistos e compará-lo com o método normal através de análise de diagnóstico.Biblioteca Digitais de Teses e Dissertações da USPNovelli, Cibele Maria RussoGarcia, Rafael Rocha de Oliveira2021-10-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-02T13:23:37Zoai:teses.usp.br:tde-02012023-110804Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-02T13:23:37Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A robust lasso regression for linear mixed-effects models with diagnostic analysis
Regressão lasso robusta para modelos lineares de efeitos mistos com análise de diagnóstico
title A robust lasso regression for linear mixed-effects models with diagnostic analysis
spellingShingle A robust lasso regression for linear mixed-effects models with diagnostic analysis
Garcia, Rafael Rocha de Oliveira
Análise de regressão
Diagnóstico
Diagnostics
Lasso
Lasso
Mixed models
Modelos mistos
Modelos robustos
Regression analysis
Robust models
title_short A robust lasso regression for linear mixed-effects models with diagnostic analysis
title_full A robust lasso regression for linear mixed-effects models with diagnostic analysis
title_fullStr A robust lasso regression for linear mixed-effects models with diagnostic analysis
title_full_unstemmed A robust lasso regression for linear mixed-effects models with diagnostic analysis
title_sort A robust lasso regression for linear mixed-effects models with diagnostic analysis
author Garcia, Rafael Rocha de Oliveira
author_facet Garcia, Rafael Rocha de Oliveira
author_role author
dc.contributor.none.fl_str_mv Novelli, Cibele Maria Russo
dc.contributor.author.fl_str_mv Garcia, Rafael Rocha de Oliveira
dc.subject.por.fl_str_mv Análise de regressão
Diagnóstico
Diagnostics
Lasso
Lasso
Mixed models
Modelos mistos
Modelos robustos
Regression analysis
Robust models
topic Análise de regressão
Diagnóstico
Diagnostics
Lasso
Lasso
Mixed models
Modelos mistos
Modelos robustos
Regression analysis
Robust models
description Variable selection has been a topic of great interest for statisticians and researchers alike. The choice of the best subset of predictors may be carried out with the objective of improving prediction or for easier interpretation of results. However, such methods are not always straightforward, mainly in the context of linear mixed-effects models. Variable selection for such models must be carried out for both fixed and random effects, the first being related to the global mean of data and the second to subject-level variance. There are two possible approaches when selecting variables for mixed-effects models: joint or two-stage procedures. In existing literature on the topic of variable selection for linear mixed-effects model, there is a method of joint selection via lasso for linear mixed-effects models under a normal distribution. Another topic of remarkable importance, is diagnostics and residual analysis. While residual analyses are carried out to assess issues with the fitted model and identification of atypical observations, diagnostic analyses are carried out assuming the model as correct and, assessing its conclusions robustness to small disturbances in the data and/or the model. There are many possible ways to deal with such observations. One is using robust models, which are said to be robust to disturbances in the data. That is, models that are better fit to data sets that possess observations considered to be as outliers and/or leverage. This work aims to use the robust method for variable selection in linear mixed-effects model and compare it with the normal method using diagnostic analysis.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-02012023-110804/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256596797718528