Multifunctional nanoparticles for ultrasound-guided theranostic application

Detalhes bibliográficos
Autor(a) principal: Arsalani, Saeideh
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/59/59135/tde-30032023-135455/
Resumo: Nanoscale materials have been widely explored in various imaging modalities andtherapy due to their remarkable physiochemical properties. For example, magnetic nanoparticles (MNPs) are of great interest for a wide range of biomedical applications owing to their controllable small size, tunable magnetic properties, and biocompatibility. In this thesis, ironoxide nanoparticles (IONPs) were synthesized and characterized, and their potential was investigated in biomedical applications. Firstly, bare IONPs were prepared through an optimized coprecipitation route and coated by polyethylene glycol (PEG) in the post-synthesis procedure. The results showed that both IONPs were highly stable, biocompatible, relatively homogeneous in shape, and free of aggregation. Interestingly, the IONPs coated by PEG exhibited relatively greater magnetization than bare IONPs, which could be attributed to the reduction of surface spine disorder after coating. Moreover, the performance of both MNPs was investigated for diagnostic (magneto-motive ultrasound imaging (MMUS)) and therapeutic (magnetic hyperthermia (MH)) applications. According to the outcomes, PEG-coated IONPs, and bareI ONPs showed an almost similar induced displacement within tissue labeled with MNPs in the MMUS. However, IONPs coated with PEG demonstrated higher heating efficiency than the naked IONPs, which could be the due to the Brownian relaxation time of MNPs after PEG coating. Furthermore, a relatively simple combination of citrate coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium bromide coated gold nanorods (CTAB-GNRs) was suggested to create hybrid NPs. Because of the oppositely charged surfaces of CTAB-GNRs and Ci-MnFe2O4, an electrostatic interaction occurred, resulting in the formation of small nanoclusters, which increased the contrast of MMUS over just using Ci-MnFe2O4. Moreover, for MH studies, these hybrid NPs not only observed almost similar heating rates as Ci-MnFe2O4 but also its equilibrium temperature was higher than just Ci-MnFe2O4 over time. Moreover, since GNRs are promising contrast agents in optical imaging, these hybrid NPs also examined in photoacoustic imaging (PA) and indicated a strong contrast.
id USP_ddf46c4336414701233cb8a4c0b25650
oai_identifier_str oai:teses.usp.br:tde-30032023-135455
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Multifunctional nanoparticles for ultrasound-guided theranostic applicationNanopartículas multifuncionais para aplicações teranósticas guiadas por ultrassomGold nanorodsHipertermia magnéticaImagem fotoacústicaMagnetic hyperthermiaMagnetic nanoparticlesMagneto-motive ultrasoundImagingMagnetoacustografiaNanobastões de uroNanopartículas magnéticasPhotoacoustic imagingNanoscale materials have been widely explored in various imaging modalities andtherapy due to their remarkable physiochemical properties. For example, magnetic nanoparticles (MNPs) are of great interest for a wide range of biomedical applications owing to their controllable small size, tunable magnetic properties, and biocompatibility. In this thesis, ironoxide nanoparticles (IONPs) were synthesized and characterized, and their potential was investigated in biomedical applications. Firstly, bare IONPs were prepared through an optimized coprecipitation route and coated by polyethylene glycol (PEG) in the post-synthesis procedure. The results showed that both IONPs were highly stable, biocompatible, relatively homogeneous in shape, and free of aggregation. Interestingly, the IONPs coated by PEG exhibited relatively greater magnetization than bare IONPs, which could be attributed to the reduction of surface spine disorder after coating. Moreover, the performance of both MNPs was investigated for diagnostic (magneto-motive ultrasound imaging (MMUS)) and therapeutic (magnetic hyperthermia (MH)) applications. According to the outcomes, PEG-coated IONPs, and bareI ONPs showed an almost similar induced displacement within tissue labeled with MNPs in the MMUS. However, IONPs coated with PEG demonstrated higher heating efficiency than the naked IONPs, which could be the due to the Brownian relaxation time of MNPs after PEG coating. Furthermore, a relatively simple combination of citrate coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium bromide coated gold nanorods (CTAB-GNRs) was suggested to create hybrid NPs. Because of the oppositely charged surfaces of CTAB-GNRs and Ci-MnFe2O4, an electrostatic interaction occurred, resulting in the formation of small nanoclusters, which increased the contrast of MMUS over just using Ci-MnFe2O4. Moreover, for MH studies, these hybrid NPs not only observed almost similar heating rates as Ci-MnFe2O4 but also its equilibrium temperature was higher than just Ci-MnFe2O4 over time. Moreover, since GNRs are promising contrast agents in optical imaging, these hybrid NPs also examined in photoacoustic imaging (PA) and indicated a strong contrast.Os materiais em nanoescala têm sido amplamente explorados em várias modalidades de imagem e terapia devido às suas notáveis propriedades físico-químicas. Por exemplo, nanopartículas magnéticas (MNPs) são de grande interesse para uma ampla gama de aplicações biomédicas devido ao seu pequeno tamanho controlável, propriedades magnéticas ajustáveis e biocompatibilidade. Nesta tese, a síntese e caracterização de nanopartículas de óxido de ferro (IONPs) foram realizadas para aplicações biomédicas por meio da rota de coprecipitação otimizada e revestidas por polietileno glicol (PEG) no procedimento de pós-síntese. Verificou-se que ambas IONPs são altamente estáveis, biocompatíveis, de forma relativamente homogênea e livres de agregação para ambos as IONPs. Curiosamente, as IONPs revestidas por PEG exibiram maior magnetização do que as IONPs nus, o que pode ser atribuído à redução da última camada atômica dessas nanopartículas. Adicionalmente, o desempenho de ambos os MNPs foram investigados para aplicações diagnósticas baseado em imagens de ultrassom por magnetomotriz (MMUS) e terapêuticas por hipertermia magnética (MH). De acordo com os resultados, não apenas as IONPs revestidas com PEG, mas também as IONPs nus mostraram um deslocamento induzido quase semelhante no MMUS. No entanto, as IONPs revestidas com PEG demonstraram maior eficiência de aquecimento em comparação com as IONPs nus, o que pode ser atribuído ao tempo de relaxação browniano das MNPs após o revestimento com PEG. Além disso, uma combinação relativamente simples de nanopartículas de Ci-MnFe2O4 e nanobastões de ouro revestidas com brometo de cetiltrimetilamônio (CTAB-GNRs) foi sugerida para criar NPs híbridas. Por causa das superfícies de cargas opostas dos CTAB-GNRs e ferrita de manganês, ocorreu uma interação eletrostática, resultando na formação de pequenos nanoaglomerados, que aumentaram consideravelmente o contraste de MMUS em relação ao uso apenas de Ci-MnFe2O4. Assim, para estudos de MH, essas NPs híbridas apresentaram uma taxa de aquecimento quase semelhante à do Ci-MnFe2O4 e uma temperatura de equilíbrio foi maior do que apenas com a ferrita de manganês. Além disso, como os GNRs são agentes de contraste promissores em imagens óticas, essas NPs híbridas também foram examinados em imagens fotoacústicas (PA), apresentando um excelente contraste.Biblioteca Digitais de Teses e Dissertações da USPBaffa Filho, OswaldoCarneiro, Antonio Adilton OliveiraArsalani, Saeideh2023-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59135/tde-30032023-135455/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-17T15:56:15Zoai:teses.usp.br:tde-30032023-135455Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-17T15:56:15Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Multifunctional nanoparticles for ultrasound-guided theranostic application
Nanopartículas multifuncionais para aplicações teranósticas guiadas por ultrassom
title Multifunctional nanoparticles for ultrasound-guided theranostic application
spellingShingle Multifunctional nanoparticles for ultrasound-guided theranostic application
Arsalani, Saeideh
Gold nanorods
Hipertermia magnética
Imagem fotoacústica
Magnetic hyperthermia
Magnetic nanoparticles
Magneto-motive ultrasoundImaging
Magnetoacustografia
Nanobastões de uro
Nanopartículas magnéticas
Photoacoustic imaging
title_short Multifunctional nanoparticles for ultrasound-guided theranostic application
title_full Multifunctional nanoparticles for ultrasound-guided theranostic application
title_fullStr Multifunctional nanoparticles for ultrasound-guided theranostic application
title_full_unstemmed Multifunctional nanoparticles for ultrasound-guided theranostic application
title_sort Multifunctional nanoparticles for ultrasound-guided theranostic application
author Arsalani, Saeideh
author_facet Arsalani, Saeideh
author_role author
dc.contributor.none.fl_str_mv Baffa Filho, Oswaldo
Carneiro, Antonio Adilton Oliveira
dc.contributor.author.fl_str_mv Arsalani, Saeideh
dc.subject.por.fl_str_mv Gold nanorods
Hipertermia magnética
Imagem fotoacústica
Magnetic hyperthermia
Magnetic nanoparticles
Magneto-motive ultrasoundImaging
Magnetoacustografia
Nanobastões de uro
Nanopartículas magnéticas
Photoacoustic imaging
topic Gold nanorods
Hipertermia magnética
Imagem fotoacústica
Magnetic hyperthermia
Magnetic nanoparticles
Magneto-motive ultrasoundImaging
Magnetoacustografia
Nanobastões de uro
Nanopartículas magnéticas
Photoacoustic imaging
description Nanoscale materials have been widely explored in various imaging modalities andtherapy due to their remarkable physiochemical properties. For example, magnetic nanoparticles (MNPs) are of great interest for a wide range of biomedical applications owing to their controllable small size, tunable magnetic properties, and biocompatibility. In this thesis, ironoxide nanoparticles (IONPs) were synthesized and characterized, and their potential was investigated in biomedical applications. Firstly, bare IONPs were prepared through an optimized coprecipitation route and coated by polyethylene glycol (PEG) in the post-synthesis procedure. The results showed that both IONPs were highly stable, biocompatible, relatively homogeneous in shape, and free of aggregation. Interestingly, the IONPs coated by PEG exhibited relatively greater magnetization than bare IONPs, which could be attributed to the reduction of surface spine disorder after coating. Moreover, the performance of both MNPs was investigated for diagnostic (magneto-motive ultrasound imaging (MMUS)) and therapeutic (magnetic hyperthermia (MH)) applications. According to the outcomes, PEG-coated IONPs, and bareI ONPs showed an almost similar induced displacement within tissue labeled with MNPs in the MMUS. However, IONPs coated with PEG demonstrated higher heating efficiency than the naked IONPs, which could be the due to the Brownian relaxation time of MNPs after PEG coating. Furthermore, a relatively simple combination of citrate coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium bromide coated gold nanorods (CTAB-GNRs) was suggested to create hybrid NPs. Because of the oppositely charged surfaces of CTAB-GNRs and Ci-MnFe2O4, an electrostatic interaction occurred, resulting in the formation of small nanoclusters, which increased the contrast of MMUS over just using Ci-MnFe2O4. Moreover, for MH studies, these hybrid NPs not only observed almost similar heating rates as Ci-MnFe2O4 but also its equilibrium temperature was higher than just Ci-MnFe2O4 over time. Moreover, since GNRs are promising contrast agents in optical imaging, these hybrid NPs also examined in photoacoustic imaging (PA) and indicated a strong contrast.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/59/59135/tde-30032023-135455/
url https://www.teses.usp.br/teses/disponiveis/59/59135/tde-30032023-135455/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091196228730880