Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-07092017-165948/ |
Resumo: | A fatoração PMF - Positive Matrix Factorization - é um método de resolução de problemas em que variáveis observadas conjuntamente são modeladas como a combinação linear de fatores potenciais, representada pela multiplicação de duas matrizes. Este método tem sido utilizado principalmente em áreas de estudo em que as variáveis observadas são sempre não negativas, e quando é aplicada uma modelagem fatorial ao problema. Assume-se a premissa de que são resultantes da multiplicação de duas matrizes com entradas não negativas, ou seja, os fatores potenciais, e os poderadores da combinação linear são desconhecidos, e têm valores não negativos. Neste método além da possibilidade de restringir a busca dos valores das matrizes da fatoração a valores não negativos, também é possível incluir a medida de incerteza relacionada a cada observação no processo de obtenção da fatoração como um modo de reduzir o efeito indesejado que valores outliers podem causar no resultado. Neste trabalho é feito um estudo de sensibilidade da fatoração PMF em relação a algumas medidas de incertezas presentes na literatura, utilizando o software EPA PMF 5.0 com ME-2. Para realizar este estudo foi desenvolvida uma metodologia de simulação de base de dados a partir de perfis de fontes emissoras conhecidas incluindo valores outliers, e aplicação sequencial da fatoração PMF com o software ME-2 nas bases de dados simuladas. |
id |
USP_de0961380be96856292a3b80394ee03e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07092017-165948 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveisA sensitivity study of PMF - Positive Matrix Factorization - regarding uncertainty measures of variablesEPAEPAIncertezaME-2ME-2PMFPMFSimulaçãoSimulationUncertaintyA fatoração PMF - Positive Matrix Factorization - é um método de resolução de problemas em que variáveis observadas conjuntamente são modeladas como a combinação linear de fatores potenciais, representada pela multiplicação de duas matrizes. Este método tem sido utilizado principalmente em áreas de estudo em que as variáveis observadas são sempre não negativas, e quando é aplicada uma modelagem fatorial ao problema. Assume-se a premissa de que são resultantes da multiplicação de duas matrizes com entradas não negativas, ou seja, os fatores potenciais, e os poderadores da combinação linear são desconhecidos, e têm valores não negativos. Neste método além da possibilidade de restringir a busca dos valores das matrizes da fatoração a valores não negativos, também é possível incluir a medida de incerteza relacionada a cada observação no processo de obtenção da fatoração como um modo de reduzir o efeito indesejado que valores outliers podem causar no resultado. Neste trabalho é feito um estudo de sensibilidade da fatoração PMF em relação a algumas medidas de incertezas presentes na literatura, utilizando o software EPA PMF 5.0 com ME-2. Para realizar este estudo foi desenvolvida uma metodologia de simulação de base de dados a partir de perfis de fontes emissoras conhecidas incluindo valores outliers, e aplicação sequencial da fatoração PMF com o software ME-2 nas bases de dados simuladas.The PMF factorization - Positive Matrix Factorization - is a problem solving method in which jointly observed variables are modeled as a linear combination of potential factors, represented by the multiplication of two matrices. This method has been used primarily in study areas in which the observed variables are always non negative, and when it is applied a factor modeling in the problem. It is made the assumption that the variables in study come from the two matrices multiplication both having non negative components, i.e., the potential factors, and the linear combination values are unknown, and all of them have non negative values. In this method, besides the possibility of constraining the search of the matrix factorization values on non negative values, it is also possible to include the uncertainty measure related to each observation on factorization process as a way to reduce the undesired effect which outliers can cause to the outcome. This paper presents a study of the sensitivity of the factorization PMF over some uncertainties measures present in literature, using EMP PMF 5.0 with ME-2 software. To carry out this study was developed a methodology of database simulation from known emitting sources profiles including outliers values, and a sequential application of PMF factorization with ME-2 software in simulated databases.Biblioteca Digitais de Teses e Dissertações da USPBarroso, Lucia PereiraCiani, Renato2016-09-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-07092017-165948/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T12:52:02Zoai:teses.usp.br:tde-07092017-165948Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T12:52:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis A sensitivity study of PMF - Positive Matrix Factorization - regarding uncertainty measures of variables |
title |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis |
spellingShingle |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis Ciani, Renato EPA EPA Incerteza ME-2 ME-2 PMF PMF Simulação Simulation Uncertainty |
title_short |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis |
title_full |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis |
title_fullStr |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis |
title_full_unstemmed |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis |
title_sort |
Um estudo de sensibilidade da fatoração PMF - Positive Matrix Factorization - em relação às medidas de incerteza das variáveis |
author |
Ciani, Renato |
author_facet |
Ciani, Renato |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barroso, Lucia Pereira |
dc.contributor.author.fl_str_mv |
Ciani, Renato |
dc.subject.por.fl_str_mv |
EPA EPA Incerteza ME-2 ME-2 PMF PMF Simulação Simulation Uncertainty |
topic |
EPA EPA Incerteza ME-2 ME-2 PMF PMF Simulação Simulation Uncertainty |
description |
A fatoração PMF - Positive Matrix Factorization - é um método de resolução de problemas em que variáveis observadas conjuntamente são modeladas como a combinação linear de fatores potenciais, representada pela multiplicação de duas matrizes. Este método tem sido utilizado principalmente em áreas de estudo em que as variáveis observadas são sempre não negativas, e quando é aplicada uma modelagem fatorial ao problema. Assume-se a premissa de que são resultantes da multiplicação de duas matrizes com entradas não negativas, ou seja, os fatores potenciais, e os poderadores da combinação linear são desconhecidos, e têm valores não negativos. Neste método além da possibilidade de restringir a busca dos valores das matrizes da fatoração a valores não negativos, também é possível incluir a medida de incerteza relacionada a cada observação no processo de obtenção da fatoração como um modo de reduzir o efeito indesejado que valores outliers podem causar no resultado. Neste trabalho é feito um estudo de sensibilidade da fatoração PMF em relação a algumas medidas de incertezas presentes na literatura, utilizando o software EPA PMF 5.0 com ME-2. Para realizar este estudo foi desenvolvida uma metodologia de simulação de base de dados a partir de perfis de fontes emissoras conhecidas incluindo valores outliers, e aplicação sequencial da fatoração PMF com o software ME-2 nas bases de dados simuladas. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-07092017-165948/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-07092017-165948/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256766259134464 |