Improved quantification under dataset shift

Detalhes bibliográficos
Autor(a) principal: Vaz, Afonso Fernandes
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-08082019-101051/
Resumo: Several machine learning applications use classifiers as a way of quantifying the prevalence of positive class labels in a target dataset, a task named quantification. For instance, a naive way of determining what proportion of positive reviews about given product in the Facebook with no labeled reviews is to (i) train a classifier based on Google Shopping reviews to predict whether a user likes a product given its review, and then (ii) apply this classifier to Facebook posts about that product. Unfortunately, it is well known that such a two-step approach, named Classify and Count, fails because of data set shift, and thus several improvements have been recently proposed under an assumption named prior shift. However, these methods only explore the relationship between the covariates and the response via classifiers and none of them take advantage of the fact that one often has access to a few labeled samples in the target set. Moreover, the literature lacks in approaches that can handle a target population that varies with another covariate; for instance: How to accurately estimate how the proportion of new posts or new webpages in favor of a political candidate varies in time? We propose novel methods that fill these important gaps and compare them using both real and artificial datasets. Finally, we provide a theoretical analysis of the methods.
id USP_df8341ad2713b2dd8f699473b6008d6f
oai_identifier_str oai:teses.usp.br:tde-08082019-101051
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Improved quantification under dataset shiftQuantificação em problemas com mudança de domínioAprendizado de máquinaData set shiftMachine learningMudança de domínioPrior shiftQuantificaçãoQuantificationSeveral machine learning applications use classifiers as a way of quantifying the prevalence of positive class labels in a target dataset, a task named quantification. For instance, a naive way of determining what proportion of positive reviews about given product in the Facebook with no labeled reviews is to (i) train a classifier based on Google Shopping reviews to predict whether a user likes a product given its review, and then (ii) apply this classifier to Facebook posts about that product. Unfortunately, it is well known that such a two-step approach, named Classify and Count, fails because of data set shift, and thus several improvements have been recently proposed under an assumption named prior shift. However, these methods only explore the relationship between the covariates and the response via classifiers and none of them take advantage of the fact that one often has access to a few labeled samples in the target set. Moreover, the literature lacks in approaches that can handle a target population that varies with another covariate; for instance: How to accurately estimate how the proportion of new posts or new webpages in favor of a political candidate varies in time? We propose novel methods that fill these important gaps and compare them using both real and artificial datasets. Finally, we provide a theoretical analysis of the methods.Muitas aplicações de aprendizado de máquina usam classificadores para determinar a prevalência da classe positiva em um conjunto de dados de interesse, uma tarefa denominada quantificação. Por exemplo, uma maneira ingênua de determinar qual a proporção de postagens positivas sobre um determinado protuto no Facebook sem ter resenhas rotuladas é (i) treinar um classificador baseado em resenhas do Google Shopping para prever se um usuário gosta de um produto qualquer, e então (ii) aplicar esse classificador às postagens do Facebook relacionados ao produtos de interesse. Infelizmente, é sabido que essa técnica de dois passos, denominada classificar e contar, falha por não levar em conta a mudança de domínio. Assim, várias melhorias vêm sendo feitas recentemente sob uma suposição denominada prior shift. Entretanto, estes métodos exploram a relação entre as covariáveis apenas via classificadores e nenhum deles aproveitam o fato de que, em algumas situações, podemos rotular algumas amostras do conjunto de dados de interesse. Além disso, a literatura carece de abordagens que possam lidar com uma população-alvo que varia com outra covariável; por exemplo: Como estimar precisamente como a proporção de novas postagens ou páginas web a favor de um candidato político varia com o tempo? Nós propomos novos métodos que preenchem essas lacunas importantes e os comparamos utilizando conjuntos de dados reais e similados. Finalmente, nós fornecemos uma análise teórica dos métodos propostos.Biblioteca Digitais de Teses e Dissertações da USPIzbicki, RafaelVaz, Afonso Fernandes2018-05-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/104/104131/tde-08082019-101051/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-08-20T23:15:55Zoai:teses.usp.br:tde-08082019-101051Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-08-20T23:15:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Improved quantification under dataset shift
Quantificação em problemas com mudança de domínio
title Improved quantification under dataset shift
spellingShingle Improved quantification under dataset shift
Vaz, Afonso Fernandes
Aprendizado de máquina
Data set shift
Machine learning
Mudança de domínio
Prior shift
Quantificação
Quantification
title_short Improved quantification under dataset shift
title_full Improved quantification under dataset shift
title_fullStr Improved quantification under dataset shift
title_full_unstemmed Improved quantification under dataset shift
title_sort Improved quantification under dataset shift
author Vaz, Afonso Fernandes
author_facet Vaz, Afonso Fernandes
author_role author
dc.contributor.none.fl_str_mv Izbicki, Rafael
dc.contributor.author.fl_str_mv Vaz, Afonso Fernandes
dc.subject.por.fl_str_mv Aprendizado de máquina
Data set shift
Machine learning
Mudança de domínio
Prior shift
Quantificação
Quantification
topic Aprendizado de máquina
Data set shift
Machine learning
Mudança de domínio
Prior shift
Quantificação
Quantification
description Several machine learning applications use classifiers as a way of quantifying the prevalence of positive class labels in a target dataset, a task named quantification. For instance, a naive way of determining what proportion of positive reviews about given product in the Facebook with no labeled reviews is to (i) train a classifier based on Google Shopping reviews to predict whether a user likes a product given its review, and then (ii) apply this classifier to Facebook posts about that product. Unfortunately, it is well known that such a two-step approach, named Classify and Count, fails because of data set shift, and thus several improvements have been recently proposed under an assumption named prior shift. However, these methods only explore the relationship between the covariates and the response via classifiers and none of them take advantage of the fact that one often has access to a few labeled samples in the target set. Moreover, the literature lacks in approaches that can handle a target population that varies with another covariate; for instance: How to accurately estimate how the proportion of new posts or new webpages in favor of a political candidate varies in time? We propose novel methods that fill these important gaps and compare them using both real and artificial datasets. Finally, we provide a theoretical analysis of the methods.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/104/104131/tde-08082019-101051/
url http://www.teses.usp.br/teses/disponiveis/104/104131/tde-08082019-101051/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090520683642880