Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation

Detalhes bibliográficos
Autor(a) principal: Clementino, Marcel Araujo
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-091224/
Resumo: Piezoelectric materials have been extensively employed for vibration reduction purposes in different fields of engineering. In general, the vibration control systems are grouped as active and passive systems, using the inverse and direct piezoelectric effect, respectively. Recently, these materials have been connected to switching circuits to perform the nonlinear management of the electrical output (voltage/current), resulting in the semi-active and semi-passive controllers. Among all configurations presented in the literature, some might be directly compared to mechanical systems used for vibration reduction in helicopters, likewise the Active Pitch Link (APL), which employs the combination of springs to control the variation of the structural stiffness. Although the APL device provides the attenuation of relevant vibration frequencies in a helicopter, the dependence on an external voltage source and possible mechanical failures (due to constant friction) are pointed out as drawbacks of the system. Therefore, this work reports on the design and experimental tests of a new smart pitch link system using piezoelectric materials for vibration attenuation. Different synchronized switching control techniques were investigated for vibration attenuation at a target frequency. A series of experiments are reported, including bench top vibration tests and whirl tower tests. The new configuration proposed here refers to a solid-state electromechanical system to address the issues of the mechanical active pitch link and provide a similar vibration attenuation performance
id USP_e22f3fdff4e4c5b6d2d8f339666d7fe9
oai_identifier_str oai:teses.usp.br:tde-14052024-091224
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Design and experimental verification of a smart piezoelectric pitch link for vibration attenuationProjeto e verificação experimental de um pitch link piezelétrico inteligente para redução de vibração em helicópteroscontrole de vibraçãoestruturas inteligenteshelicópteroshelicopterspiezeletricidadepiezoelectricitypitch linkpitch linksmart structuresvibration controlPiezoelectric materials have been extensively employed for vibration reduction purposes in different fields of engineering. In general, the vibration control systems are grouped as active and passive systems, using the inverse and direct piezoelectric effect, respectively. Recently, these materials have been connected to switching circuits to perform the nonlinear management of the electrical output (voltage/current), resulting in the semi-active and semi-passive controllers. Among all configurations presented in the literature, some might be directly compared to mechanical systems used for vibration reduction in helicopters, likewise the Active Pitch Link (APL), which employs the combination of springs to control the variation of the structural stiffness. Although the APL device provides the attenuation of relevant vibration frequencies in a helicopter, the dependence on an external voltage source and possible mechanical failures (due to constant friction) are pointed out as drawbacks of the system. Therefore, this work reports on the design and experimental tests of a new smart pitch link system using piezoelectric materials for vibration attenuation. Different synchronized switching control techniques were investigated for vibration attenuation at a target frequency. A series of experiments are reported, including bench top vibration tests and whirl tower tests. The new configuration proposed here refers to a solid-state electromechanical system to address the issues of the mechanical active pitch link and provide a similar vibration attenuation performanceOs materiais piezelétricos têm sido amplamente utilizados em pesquisas que visam a atenuação de vibrações em diversos ramos da engenharia. Em geral, os sistemas de controle de vibrações são classificados como sistemas ativos e passivos, os quais utilizam, respectivamente, o efeito piezelétrico inverso e direto. Recentemente, estes materiais passaram a ser conectados a circuitos chaveados para o tratamento não linear de sua saída elétrica (tensão/corrente), resultando nos controladores semiativos e semipassivos. Dentre as diversas configurações apresentadas na literatura, algumas podem ser diretamente comparadas com sistemas mecânicos utilizados para a redução de vibrações em helicópteros, como é o caso do Active Pitch Link (APL), o qual possibilita a combinação de molas para controlar a variação de sua rigidez. Embora este dispositivo proporcione a atenuação de frequências relevantes para helicópteros, alguns pontos negativos são apontados, como a dependência de uma fonte externa de energia para seu funcionamento e possibilidade de falhas mecânicas (devido ao atrito constante). Deste modo, o objetivo deste projeto é desenvolver um pitch link inteligente, utilizando materiais piezelétricos, do qual se espera ter bom desempenho na redução de vibrações e evitar problemas típicos de sistemas mecânicos, como o APL. Diferentes técnicas de controle foram utilizadas com o novo pitch link visando reduzir vibrações de uma frequência alvo. Esta tese descreve as atividades realizadas durante o desenvolvimento deste projeto e apresenta os resultados obtidos a partir de uma série de ensaios experimentais realizados com o dispositivo proposto, incluindo ensaios de vibração em bancada e ensaios rotativos. A nova configuração proposta refere-se a um sistema eletromecânico em estado sólido, proposto para tentar solucionar os problemas envolvidos com um pitch link mecânico, fornecendo um desempenho similar em termos de atenuação de vibraçãoBiblioteca Digitais de Teses e Dissertações da USPMarqui Junior, Carlos DeNitzsche, FredClementino, Marcel Araujo2019-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-091224/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-14T13:41:03Zoai:teses.usp.br:tde-14052024-091224Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-14T13:41:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
Projeto e verificação experimental de um pitch link piezelétrico inteligente para redução de vibração em helicópteros
title Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
spellingShingle Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
Clementino, Marcel Araujo
controle de vibração
estruturas inteligentes
helicópteros
helicopters
piezeletricidade
piezoelectricity
pitch link
pitch link
smart structures
vibration control
title_short Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
title_full Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
title_fullStr Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
title_full_unstemmed Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
title_sort Design and experimental verification of a smart piezoelectric pitch link for vibration attenuation
author Clementino, Marcel Araujo
author_facet Clementino, Marcel Araujo
author_role author
dc.contributor.none.fl_str_mv Marqui Junior, Carlos De
Nitzsche, Fred
dc.contributor.author.fl_str_mv Clementino, Marcel Araujo
dc.subject.por.fl_str_mv controle de vibração
estruturas inteligentes
helicópteros
helicopters
piezeletricidade
piezoelectricity
pitch link
pitch link
smart structures
vibration control
topic controle de vibração
estruturas inteligentes
helicópteros
helicopters
piezeletricidade
piezoelectricity
pitch link
pitch link
smart structures
vibration control
description Piezoelectric materials have been extensively employed for vibration reduction purposes in different fields of engineering. In general, the vibration control systems are grouped as active and passive systems, using the inverse and direct piezoelectric effect, respectively. Recently, these materials have been connected to switching circuits to perform the nonlinear management of the electrical output (voltage/current), resulting in the semi-active and semi-passive controllers. Among all configurations presented in the literature, some might be directly compared to mechanical systems used for vibration reduction in helicopters, likewise the Active Pitch Link (APL), which employs the combination of springs to control the variation of the structural stiffness. Although the APL device provides the attenuation of relevant vibration frequencies in a helicopter, the dependence on an external voltage source and possible mechanical failures (due to constant friction) are pointed out as drawbacks of the system. Therefore, this work reports on the design and experimental tests of a new smart pitch link system using piezoelectric materials for vibration attenuation. Different synchronized switching control techniques were investigated for vibration attenuation at a target frequency. A series of experiments are reported, including bench top vibration tests and whirl tower tests. The new configuration proposed here refers to a solid-state electromechanical system to address the issues of the mechanical active pitch link and provide a similar vibration attenuation performance
publishDate 2019
dc.date.none.fl_str_mv 2019-02-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-091224/
url https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-091224/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090709794324480