Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11152/tde-26052021-144804/ |
Resumo: | O uso racional de recursos na agricultura ganhou importância nos últimos anos devido à necessidade de assegurar a sustentabilidade da produção agrícola, de forma a evitar consequências ambientais e até mesmo a iminência de escassez de recursos, como é o caso da água. Pela complexidade de estimar a resposta da planta à disponibilidade hídrica, uma técnica que vem obtendo grande importância é a utilização de imagens térmicas. Porém, o diagnóstico por imagens não é intuitivo e demanda do avaliador conhecimentos físico-químicos do solo e da planta, além de tempo e experiência. Devido a tal limitação, buscaram-se métodos computacionais que possam ser utilizados para realizar essa tarefa, estimando o estado hídrico de plantas a partir de imagens térmicas, suprindo a necessidade de um especialista. Para isso, duas técnicas de eficácia comprovada foram utilizadas: a rede Inception-Resnet-v2 e a técnica transfer learning. Experimentos foram realizados e os resultados obtidos mostram que o sistema de classificação do estresse hídrico na planta desenvolvido, com avaliação a partir da imagem térmica de modo não destrutivo, alcançou um desempenho superior em comparação à avaliação feita por especialista. Além disso, o desempenho foi superior na acurácia global, bem como em sua capacidade de distinguir entre as classes, demonstrando ser uma ferramenta eficaz para a realização de tal tarefa, demandando menor tempo. |
id |
USP_e235d97ac3dd5109ac051c7b9e9cdb11 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26052021-144804 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicasDeep Learning for identification of water deficit in plants based on thermal imagesImagem termalIrrigation managementManejo de irrigaçãoNeural networkRedes NeuraisThermal imageTransfer learningTransfer learningO uso racional de recursos na agricultura ganhou importância nos últimos anos devido à necessidade de assegurar a sustentabilidade da produção agrícola, de forma a evitar consequências ambientais e até mesmo a iminência de escassez de recursos, como é o caso da água. Pela complexidade de estimar a resposta da planta à disponibilidade hídrica, uma técnica que vem obtendo grande importância é a utilização de imagens térmicas. Porém, o diagnóstico por imagens não é intuitivo e demanda do avaliador conhecimentos físico-químicos do solo e da planta, além de tempo e experiência. Devido a tal limitação, buscaram-se métodos computacionais que possam ser utilizados para realizar essa tarefa, estimando o estado hídrico de plantas a partir de imagens térmicas, suprindo a necessidade de um especialista. Para isso, duas técnicas de eficácia comprovada foram utilizadas: a rede Inception-Resnet-v2 e a técnica transfer learning. Experimentos foram realizados e os resultados obtidos mostram que o sistema de classificação do estresse hídrico na planta desenvolvido, com avaliação a partir da imagem térmica de modo não destrutivo, alcançou um desempenho superior em comparação à avaliação feita por especialista. Além disso, o desempenho foi superior na acurácia global, bem como em sua capacidade de distinguir entre as classes, demonstrando ser uma ferramenta eficaz para a realização de tal tarefa, demandando menor tempo.Rationing of resources in agriculture has gained focus in recent years, owing to the need to ensure the sustainability of agricultural production, to avoid unfavorable environmental consequences with the imminent scarcity of resources such as water. The use of thermal images to evaluate water availability of plants has been gaining attention recently owing to the complexity of estimating a plant\'s response to water availability. However, diagnostic imaging is not intuitive and requires evaluator knowledge of the physicochemical properties of the soil and the plant species, in addition to time and experience. To circumvent this limitation, computational methods can be used to perform this task without the requirement of a specialist. The objective of this study was to develop a method to estimate the water availability of sugarcane plants using thermal images, without the need of a specialist. For this, two neural network methods with proven effectiveness were implemented: Inception-Resnet-v2 network and transfer learning technique. Experiments were conducted and the results showed that the developed system achieved superior performance compared to the assessments made by a specialist and aided in classifying the water stress of plant\'s thermal images in a nondestructive manner. In addition to this overall superior performance in accuracy, the neural network demonstrated a greater ability to distinguish between the classes of thermal stress. Thus, the system developed in this study is a less time-consuming, affordable, and effective tool for estimating the water availability.Biblioteca Digitais de Teses e Dissertações da USPMarques, Patricia Angélica AlvesMelo, Leonardo Leite de2021-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-26052021-144804/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-05-27T22:48:02Zoai:teses.usp.br:tde-26052021-144804Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-27T22:48:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas Deep Learning for identification of water deficit in plants based on thermal images |
title |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas |
spellingShingle |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas Melo, Leonardo Leite de Imagem termal Irrigation management Manejo de irrigação Neural network Redes Neurais Thermal image Transfer learning Transfer learning |
title_short |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas |
title_full |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas |
title_fullStr |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas |
title_full_unstemmed |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas |
title_sort |
Deep learning para identificação de déficit hídrico em plantas com base em imagens térmicas |
author |
Melo, Leonardo Leite de |
author_facet |
Melo, Leonardo Leite de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marques, Patricia Angélica Alves |
dc.contributor.author.fl_str_mv |
Melo, Leonardo Leite de |
dc.subject.por.fl_str_mv |
Imagem termal Irrigation management Manejo de irrigação Neural network Redes Neurais Thermal image Transfer learning Transfer learning |
topic |
Imagem termal Irrigation management Manejo de irrigação Neural network Redes Neurais Thermal image Transfer learning Transfer learning |
description |
O uso racional de recursos na agricultura ganhou importância nos últimos anos devido à necessidade de assegurar a sustentabilidade da produção agrícola, de forma a evitar consequências ambientais e até mesmo a iminência de escassez de recursos, como é o caso da água. Pela complexidade de estimar a resposta da planta à disponibilidade hídrica, uma técnica que vem obtendo grande importância é a utilização de imagens térmicas. Porém, o diagnóstico por imagens não é intuitivo e demanda do avaliador conhecimentos físico-químicos do solo e da planta, além de tempo e experiência. Devido a tal limitação, buscaram-se métodos computacionais que possam ser utilizados para realizar essa tarefa, estimando o estado hídrico de plantas a partir de imagens térmicas, suprindo a necessidade de um especialista. Para isso, duas técnicas de eficácia comprovada foram utilizadas: a rede Inception-Resnet-v2 e a técnica transfer learning. Experimentos foram realizados e os resultados obtidos mostram que o sistema de classificação do estresse hídrico na planta desenvolvido, com avaliação a partir da imagem térmica de modo não destrutivo, alcançou um desempenho superior em comparação à avaliação feita por especialista. Além disso, o desempenho foi superior na acurácia global, bem como em sua capacidade de distinguir entre as classes, demonstrando ser uma ferramenta eficaz para a realização de tal tarefa, demandando menor tempo. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-26052021-144804/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-26052021-144804/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257392872423424 |