Metodologia para extração de características invariantes à rotação em imagens de impressões digitais

Detalhes bibliográficos
Autor(a) principal: Mazetti, Cristina Mônica Dornelas
Data de Publicação: 2006
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03032007-085126/
Resumo: O objetivo deste trabalho é apresentar algoritmos aplicados para extração de características invariantes à rotação em imagens de impressões digitais. No pré-processamento da imagem utiliza-se detecção de bordas pelo detector de Canny tendo como resultado uma imagem binarizada e afinada. Na extração das minúcias a metodologia adotada é o número de cruzamentos (CN), que extrai os aspectos locais, tais como, as minúcias fim de linha e bifurcações. A direção das cristas locais não é utilizada porque nas imagens rotacionadas a condição de permanência das propriedades biométricas não são satisfeitas. A comparação das impressões digitais utiliza os vetores gerados pela extração de minúcias considerando a posição (x,y) da minúcia armazenada em um vetor por tipo de minúcia (um vetor para crista final e outro vetor para crista bifurcada) e calculando a distância Euclidiana dessa posição (x,y) ao centro de massa da distribuição de minúcias para cada tipo de minúcia. Assim, as duas imagens são similares quando a distância Euclidiana entre os vetores de cada imagem e por tipo de minúcia forem mínimas. São discutidas as limitações de outros trabalhos existentes envolvendo rotação, translação e distorção da imagem de impressão digital, mostrando que os poucos trabalhos que tratam o problema possuem resultados não satisfatórios. Os maiores problemas ocorridos foram a extração de minúcias espúrias, mas foram resolvidos com os métodos sugeridos por Dixon (1979), tendo resultados satisfatórios em duas metodologias. No método média, a precisão para encontrar uma imagem foi de 100%, duas imagens 97,32%, três imagens 92,35%, quatro imagens 86,41% e cinco imagens 71,86%. E no método normal, a precisão para encontrar uma imagem foi de 100%, duas imagens 99,20%, três imagens 96,95%, quatro imagens 94,00% e cinco imagens 76,43%.
id USP_e2a27e8c7cd4c4f98486e9a3651c85aa
oai_identifier_str oai:teses.usp.br:tde-03032007-085126
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Metodologia para extração de características invariantes à rotação em imagens de impressões digitaisMethodology for the extraction of features invariant to the rotation in fingerprint imagesFingerprint recognitionImpressão digitalInvariância com relação à rotaçãoPattern recognitionReconhecimento de padrõesRotation invarianceO objetivo deste trabalho é apresentar algoritmos aplicados para extração de características invariantes à rotação em imagens de impressões digitais. No pré-processamento da imagem utiliza-se detecção de bordas pelo detector de Canny tendo como resultado uma imagem binarizada e afinada. Na extração das minúcias a metodologia adotada é o número de cruzamentos (CN), que extrai os aspectos locais, tais como, as minúcias fim de linha e bifurcações. A direção das cristas locais não é utilizada porque nas imagens rotacionadas a condição de permanência das propriedades biométricas não são satisfeitas. A comparação das impressões digitais utiliza os vetores gerados pela extração de minúcias considerando a posição (x,y) da minúcia armazenada em um vetor por tipo de minúcia (um vetor para crista final e outro vetor para crista bifurcada) e calculando a distância Euclidiana dessa posição (x,y) ao centro de massa da distribuição de minúcias para cada tipo de minúcia. Assim, as duas imagens são similares quando a distância Euclidiana entre os vetores de cada imagem e por tipo de minúcia forem mínimas. São discutidas as limitações de outros trabalhos existentes envolvendo rotação, translação e distorção da imagem de impressão digital, mostrando que os poucos trabalhos que tratam o problema possuem resultados não satisfatórios. Os maiores problemas ocorridos foram a extração de minúcias espúrias, mas foram resolvidos com os métodos sugeridos por Dixon (1979), tendo resultados satisfatórios em duas metodologias. No método média, a precisão para encontrar uma imagem foi de 100%, duas imagens 97,32%, três imagens 92,35%, quatro imagens 86,41% e cinco imagens 71,86%. E no método normal, a precisão para encontrar uma imagem foi de 100%, duas imagens 99,20%, três imagens 96,95%, quatro imagens 94,00% e cinco imagens 76,43%.The objective of this research is to present algorithms that can be applied in fingerprints images in order to extract certain features, which are invariant to an likely rotation in the given image. In the preprocessing stage, the Canny border detector is used, resulting in a binary, fine tuned image. For the minutiae extraction, the crossing number method is used, which extracts local aspects such as minutiae endings and bifurcations. The direction of local ridges is ignored because, in rotated images, the permanence conditions of the biometric attributes are not fulfilled. The process of matching fingerprints uses two arrays (one for ridge endings and the other for bifurcations), which are generated by the extraction of the minutiae, considering the (x,y) coordinate of the given minutiae stored in the arrays, and calculating its Euclidian distance relating to the center of mass of the minutiae distribution, for each of its types (ending or bifurcation). Thus, both images are similar when the Euclidian distance between the arrays of each image, distinct by the type of each minutiae, is minimal. The limitations of other pieces of research works concerning fingerprint image rotation, translation and distortion are discussed, indicating that the only few ones that deal with these kinds of problems give unsatisfactory results.Biblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonMazetti, Cristina Mônica Dornelas2006-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18133/tde-03032007-085126/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-04-11T11:14:14Zoai:teses.usp.br:tde-03032007-085126Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-11T11:14:14Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
Methodology for the extraction of features invariant to the rotation in fingerprint images
title Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
spellingShingle Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
Mazetti, Cristina Mônica Dornelas
Fingerprint recognition
Impressão digital
Invariância com relação à rotação
Pattern recognition
Reconhecimento de padrões
Rotation invariance
title_short Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
title_full Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
title_fullStr Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
title_full_unstemmed Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
title_sort Metodologia para extração de características invariantes à rotação em imagens de impressões digitais
author Mazetti, Cristina Mônica Dornelas
author_facet Mazetti, Cristina Mônica Dornelas
author_role author
dc.contributor.none.fl_str_mv Gonzaga, Adilson
dc.contributor.author.fl_str_mv Mazetti, Cristina Mônica Dornelas
dc.subject.por.fl_str_mv Fingerprint recognition
Impressão digital
Invariância com relação à rotação
Pattern recognition
Reconhecimento de padrões
Rotation invariance
topic Fingerprint recognition
Impressão digital
Invariância com relação à rotação
Pattern recognition
Reconhecimento de padrões
Rotation invariance
description O objetivo deste trabalho é apresentar algoritmos aplicados para extração de características invariantes à rotação em imagens de impressões digitais. No pré-processamento da imagem utiliza-se detecção de bordas pelo detector de Canny tendo como resultado uma imagem binarizada e afinada. Na extração das minúcias a metodologia adotada é o número de cruzamentos (CN), que extrai os aspectos locais, tais como, as minúcias fim de linha e bifurcações. A direção das cristas locais não é utilizada porque nas imagens rotacionadas a condição de permanência das propriedades biométricas não são satisfeitas. A comparação das impressões digitais utiliza os vetores gerados pela extração de minúcias considerando a posição (x,y) da minúcia armazenada em um vetor por tipo de minúcia (um vetor para crista final e outro vetor para crista bifurcada) e calculando a distância Euclidiana dessa posição (x,y) ao centro de massa da distribuição de minúcias para cada tipo de minúcia. Assim, as duas imagens são similares quando a distância Euclidiana entre os vetores de cada imagem e por tipo de minúcia forem mínimas. São discutidas as limitações de outros trabalhos existentes envolvendo rotação, translação e distorção da imagem de impressão digital, mostrando que os poucos trabalhos que tratam o problema possuem resultados não satisfatórios. Os maiores problemas ocorridos foram a extração de minúcias espúrias, mas foram resolvidos com os métodos sugeridos por Dixon (1979), tendo resultados satisfatórios em duas metodologias. No método média, a precisão para encontrar uma imagem foi de 100%, duas imagens 97,32%, três imagens 92,35%, quatro imagens 86,41% e cinco imagens 71,86%. E no método normal, a precisão para encontrar uma imagem foi de 100%, duas imagens 99,20%, três imagens 96,95%, quatro imagens 94,00% e cinco imagens 76,43%.
publishDate 2006
dc.date.none.fl_str_mv 2006-09-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03032007-085126/
url http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03032007-085126/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256630267215872