Modelagem de séries temporais para fins de previsão

Detalhes bibliográficos
Autor(a) principal: Farias, Hiron Pereira
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-23052019-183018/
Resumo: Nesse trabalho, exploramos técnicas para análise de séries temporais para fins de previsão. Para tanto, foram considerados dados observados de três séries climáticas e de uma série econômica. Para análise das séries climáticas, foi considerada a modelagem multivariada em comparação com os subsequentes modelos univariados de cada série. Os modelos multivariados e univariados foram comparados com base em seus respectivos resultados preditivos. Para análise da série econômica, considerou-se a modelagem ARMA-GARCH, cuja média condicional e variância condicional são modeladas conjuntamente. Para essa mesma série foi realizada uma modelagem ARIMA em que considerou-se dois casos. No primeiro, a modelagem foi realizada na série original. No segundo, foi realizada na pré-modelagem uma filtragem na série, denominada de sistema de decomposição Wavelet- WavDS, com o objetivo de melhorar o poder preditivo. Na seleção dos modelos ARIMA, considerou-se a metodologia backtesting, em que as previsões são realizadas de forma sequencial, o modelo selecionado foi o que apresentou menor raiz quadrada do erro quadrático médio de previsão (REQM). Toda análise estatística realizada nesse trabalho foi com auxílio do software livre R.
id USP_e35ff52cab44231125b1cddaeb89ab5c
oai_identifier_str oai:teses.usp.br:tde-23052019-183018
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelagem de séries temporais para fins de previsãoTime-series modeling for prediction purposesCommodityARMA Modeling (p; q)Climate variablesCommodityModelagem ARMA(p; q)Série TemporalTime seriesVariáveis climáticasNesse trabalho, exploramos técnicas para análise de séries temporais para fins de previsão. Para tanto, foram considerados dados observados de três séries climáticas e de uma série econômica. Para análise das séries climáticas, foi considerada a modelagem multivariada em comparação com os subsequentes modelos univariados de cada série. Os modelos multivariados e univariados foram comparados com base em seus respectivos resultados preditivos. Para análise da série econômica, considerou-se a modelagem ARMA-GARCH, cuja média condicional e variância condicional são modeladas conjuntamente. Para essa mesma série foi realizada uma modelagem ARIMA em que considerou-se dois casos. No primeiro, a modelagem foi realizada na série original. No segundo, foi realizada na pré-modelagem uma filtragem na série, denominada de sistema de decomposição Wavelet- WavDS, com o objetivo de melhorar o poder preditivo. Na seleção dos modelos ARIMA, considerou-se a metodologia backtesting, em que as previsões são realizadas de forma sequencial, o modelo selecionado foi o que apresentou menor raiz quadrada do erro quadrático médio de previsão (REQM). Toda análise estatística realizada nesse trabalho foi com auxílio do software livre R.In this study, we explored techniques of time-series analysis for prediction purposes. For that, we considered data observed from three climate series and one economic series. For the analysis of the climate series, we considered the multivariate modelling in comparison with the subsequent univariate models of each series. The multivariate and univariate models were compared based on their respective predictive results. For the analysis of the economic series, the ARMA-GARCH modeling was considered, whose conditional average and conditional variance are modeled together. For this same series, the ARIMA modeling was used, considering two cases. At first, the modeling was performed in the original series. In the second, we carried out a filtering in the series during pre-modeling, called Wavelet- WavDS decomposition system, in order to improve the predictive power. In the selection of ARIMA models, we considered the backtesting methodology in which forecasts are performed in sequence. The model selected showed the lowest square root mean of the prediction square error (REQM). All statistical analyses performed in this work were carried out using the free software R.Biblioteca Digitais de Teses e Dissertações da USPDias, Carlos Tadeu dos SantosFarias, Hiron Pereira2019-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-23052019-183018/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T17:56:42Zoai:teses.usp.br:tde-23052019-183018Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:56:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelagem de séries temporais para fins de previsão
Time-series modeling for prediction purposes
title Modelagem de séries temporais para fins de previsão
spellingShingle Modelagem de séries temporais para fins de previsão
Farias, Hiron Pereira
Commodity
ARMA Modeling (p; q)
Climate variables
Commodity
Modelagem ARMA(p; q)
Série Temporal
Time series
Variáveis climáticas
title_short Modelagem de séries temporais para fins de previsão
title_full Modelagem de séries temporais para fins de previsão
title_fullStr Modelagem de séries temporais para fins de previsão
title_full_unstemmed Modelagem de séries temporais para fins de previsão
title_sort Modelagem de séries temporais para fins de previsão
author Farias, Hiron Pereira
author_facet Farias, Hiron Pereira
author_role author
dc.contributor.none.fl_str_mv Dias, Carlos Tadeu dos Santos
dc.contributor.author.fl_str_mv Farias, Hiron Pereira
dc.subject.por.fl_str_mv Commodity
ARMA Modeling (p; q)
Climate variables
Commodity
Modelagem ARMA(p; q)
Série Temporal
Time series
Variáveis climáticas
topic Commodity
ARMA Modeling (p; q)
Climate variables
Commodity
Modelagem ARMA(p; q)
Série Temporal
Time series
Variáveis climáticas
description Nesse trabalho, exploramos técnicas para análise de séries temporais para fins de previsão. Para tanto, foram considerados dados observados de três séries climáticas e de uma série econômica. Para análise das séries climáticas, foi considerada a modelagem multivariada em comparação com os subsequentes modelos univariados de cada série. Os modelos multivariados e univariados foram comparados com base em seus respectivos resultados preditivos. Para análise da série econômica, considerou-se a modelagem ARMA-GARCH, cuja média condicional e variância condicional são modeladas conjuntamente. Para essa mesma série foi realizada uma modelagem ARIMA em que considerou-se dois casos. No primeiro, a modelagem foi realizada na série original. No segundo, foi realizada na pré-modelagem uma filtragem na série, denominada de sistema de decomposição Wavelet- WavDS, com o objetivo de melhorar o poder preditivo. Na seleção dos modelos ARIMA, considerou-se a metodologia backtesting, em que as previsões são realizadas de forma sequencial, o modelo selecionado foi o que apresentou menor raiz quadrada do erro quadrático médio de previsão (REQM). Toda análise estatística realizada nesse trabalho foi com auxílio do software livre R.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-23052019-183018/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-23052019-183018/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257363628687360