Análise Bayesiana de Modelos para Dados Binários Correlacionados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02032018-141504/ |
Resumo: | Nesta dissertação, desenvolvemos uma análise Bayesiana de modelos de regressão para dados binários correlacionados com covariáveis, podendo ocorrer réplicas. Assumimos os modelos de regressão logístico e probito para dados binários correlacionados considerando efeitos aleatórios com uma mistura de distribuições normais, pois este modelo tem uma grande flexibilidade para ser ajustado aos dados binários correlacionados em muitas aplicações. Também fazemos algumas considerações aos casos onde podem ocorrer repetições das observações ou réplicas. Assumimos distribuições a priori informativas para os parâmetros do modelo e consideramos os algoritmos Gibbs sampling e Metropolis- Hastings, para obter as estimativas de Monte Carlo para as quantidades a posteriori de interesse. Apresentamos também algumas considerações na seleção de modelos utilizando uma medida da discrepância entre o modelo ajustado e os dados (resíduo de Pearson) e utilizando as densidades preditivas (fator de Bayes) estimadas por MCMC (Monte Carlo em Cadeias de Markov). Apresentamos um exemplo númerico para ilustrar os métodos propostos. |
id |
USP_e5236b0b5e6bf2d79221e3b4de3e54ed |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02032018-141504 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise Bayesiana de Modelos para Dados Binários CorrelacionadosNot availableNão disponívelNot availabeNesta dissertação, desenvolvemos uma análise Bayesiana de modelos de regressão para dados binários correlacionados com covariáveis, podendo ocorrer réplicas. Assumimos os modelos de regressão logístico e probito para dados binários correlacionados considerando efeitos aleatórios com uma mistura de distribuições normais, pois este modelo tem uma grande flexibilidade para ser ajustado aos dados binários correlacionados em muitas aplicações. Também fazemos algumas considerações aos casos onde podem ocorrer repetições das observações ou réplicas. Assumimos distribuições a priori informativas para os parâmetros do modelo e consideramos os algoritmos Gibbs sampling e Metropolis- Hastings, para obter as estimativas de Monte Carlo para as quantidades a posteriori de interesse. Apresentamos também algumas considerações na seleção de modelos utilizando uma medida da discrepância entre o modelo ajustado e os dados (resíduo de Pearson) e utilizando as densidades preditivas (fator de Bayes) estimadas por MCMC (Monte Carlo em Cadeias de Markov). Apresentamos um exemplo númerico para ilustrar os métodos propostos.In this dissertation, we develop a Bayesian analysis of regression models for correlated binary data in the presence of covariates, including the case with replicates. We consider probit and logistic regression models for correlated binary data assuming random effects with a mixture of normal distributions, since this model have great flexibility to the fitted for correlated binary data. We also present some considerations for the case with replicates. We assume informative prior distributions for the parameters of the model and we use Gibbs sampling and Metropolis-Hastings algorithms to get Monte Cano estimates for the posterior quantities of interest. We also present some considerations for the selection of models using discrepancy measures between the fitted model and the data (Pearson residuais) and using the predictive densities (Bayes factor) estimated by MCMC (Markov Chain Monte Cano). We present a numerical example to illustrate the proposed methodology.Biblioteca Digitais de Teses e Dissertações da USPAchcar, Jorge AlbertoJaneiro, Vanderly2000-05-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-02032018-141504/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-02032018-141504Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise Bayesiana de Modelos para Dados Binários Correlacionados Not available |
title |
Análise Bayesiana de Modelos para Dados Binários Correlacionados |
spellingShingle |
Análise Bayesiana de Modelos para Dados Binários Correlacionados Janeiro, Vanderly Não disponível Not availabe |
title_short |
Análise Bayesiana de Modelos para Dados Binários Correlacionados |
title_full |
Análise Bayesiana de Modelos para Dados Binários Correlacionados |
title_fullStr |
Análise Bayesiana de Modelos para Dados Binários Correlacionados |
title_full_unstemmed |
Análise Bayesiana de Modelos para Dados Binários Correlacionados |
title_sort |
Análise Bayesiana de Modelos para Dados Binários Correlacionados |
author |
Janeiro, Vanderly |
author_facet |
Janeiro, Vanderly |
author_role |
author |
dc.contributor.none.fl_str_mv |
Achcar, Jorge Alberto |
dc.contributor.author.fl_str_mv |
Janeiro, Vanderly |
dc.subject.por.fl_str_mv |
Não disponível Not availabe |
topic |
Não disponível Not availabe |
description |
Nesta dissertação, desenvolvemos uma análise Bayesiana de modelos de regressão para dados binários correlacionados com covariáveis, podendo ocorrer réplicas. Assumimos os modelos de regressão logístico e probito para dados binários correlacionados considerando efeitos aleatórios com uma mistura de distribuições normais, pois este modelo tem uma grande flexibilidade para ser ajustado aos dados binários correlacionados em muitas aplicações. Também fazemos algumas considerações aos casos onde podem ocorrer repetições das observações ou réplicas. Assumimos distribuições a priori informativas para os parâmetros do modelo e consideramos os algoritmos Gibbs sampling e Metropolis- Hastings, para obter as estimativas de Monte Carlo para as quantidades a posteriori de interesse. Apresentamos também algumas considerações na seleção de modelos utilizando uma medida da discrepância entre o modelo ajustado e os dados (resíduo de Pearson) e utilizando as densidades preditivas (fator de Bayes) estimadas por MCMC (Monte Carlo em Cadeias de Markov). Apresentamos um exemplo númerico para ilustrar os métodos propostos. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-05-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02032018-141504/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02032018-141504/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256601168183296 |