Técnicas de mineração de dados para análise de imagens

Detalhes bibliográficos
Autor(a) principal: Consularo, Luís Augusto
Data de Publicação: 2000
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14012009-101451/
Resumo: Imagens codificadas por matrizes de intensidade são tipicamente representadas por grande quantidade de dados. Embora existam inúmeras abordagens para análise de imagens, o conhecimento sobre problemas específicos é raramente considerado. Este trabalho trata sobre problemas de análises de imagens cujas soluções dependem do conhecimento sobre os dados envolvidos na aplicação específica. Para isso, utiliza técnicas de mineração de dados para modelar as respostas humanas obtidas de experimentos psicofísicos. Dois problemas de análise de imagens são apresentados: (1) a análise de formas e (2) a análise pictórica. No primeiro problema (1), formas de neurônios da retina (neurônios ganglionares de gato) são segmentadas e seus contornos submetidos a uma calibração dos parâmetros de curvatura considerando a segmentação manual de um especialista. Outros descritores, tais como esqueletos multi-escalas são explorados para eventual uso e avaliação da abordagem. No segundo problema (2), a análise pictórica de imagens de home-pages serve para avaliar critérios estéticos a partir de medidas de complexidade, contraste e textura. O sistema generaliza as respostas por um experimento psicofísico realizados com humanos. Os resultados objetivos com as duas abordagens revelaram-se promissores, surpreendentes e com ampla aplicabilidade.
id USP_e552e526077cbabcf975f5870de85f81
oai_identifier_str oai:teses.usp.br:tde-14012009-101451
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Técnicas de mineração de dados para análise de imagensData mining techniques for image analysisAnálise de formasAnálise de imagensComputer visionData miningDescoberta de conhecimento em imagensImage analysisImage understandingMineração de dadosShape analysisVisão computacionalImagens codificadas por matrizes de intensidade são tipicamente representadas por grande quantidade de dados. Embora existam inúmeras abordagens para análise de imagens, o conhecimento sobre problemas específicos é raramente considerado. Este trabalho trata sobre problemas de análises de imagens cujas soluções dependem do conhecimento sobre os dados envolvidos na aplicação específica. Para isso, utiliza técnicas de mineração de dados para modelar as respostas humanas obtidas de experimentos psicofísicos. Dois problemas de análise de imagens são apresentados: (1) a análise de formas e (2) a análise pictórica. No primeiro problema (1), formas de neurônios da retina (neurônios ganglionares de gato) são segmentadas e seus contornos submetidos a uma calibração dos parâmetros de curvatura considerando a segmentação manual de um especialista. Outros descritores, tais como esqueletos multi-escalas são explorados para eventual uso e avaliação da abordagem. No segundo problema (2), a análise pictórica de imagens de home-pages serve para avaliar critérios estéticos a partir de medidas de complexidade, contraste e textura. O sistema generaliza as respostas por um experimento psicofísico realizados com humanos. Os resultados objetivos com as duas abordagens revelaram-se promissores, surpreendentes e com ampla aplicabilidade.Images coded by intensity matrices typically involve large amount of data. Although image analysis approaches are diverse, knowledge about specific problems is rarely considered. This work is about image analysis problems whose solutions depend on the knowledge about the involved data. In order to do so data mining techniques are applied to model human response to psychophysical experiments. Two image analysis problems are addressed: (1) shape analysis; and (2) pictorial analysis. In the former, neuronal images (ganglion retinal cells of cat) are segmented and curvature parameters are calibrated to identify extremities and branches on the shape considering human segmentation as a reference. Descriptors such as multiscale skeletons are also explored for potential application or evaluations. In the second problem, a pictorial analysis of home-pages images feed an artificial aesthetics criteria evaluator based on complexity, contrast and texture features. The system models and generalizes the obtained human responses to psychophysical experiment. The results for these two approaches are promising, surprising and widely applicable.Biblioteca Digitais de Teses e Dissertações da USPCosta, Luciano da FontouraConsularo, Luís Augusto2000-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-14012009-101451/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-14012009-101451Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Técnicas de mineração de dados para análise de imagens
Data mining techniques for image analysis
title Técnicas de mineração de dados para análise de imagens
spellingShingle Técnicas de mineração de dados para análise de imagens
Consularo, Luís Augusto
Análise de formas
Análise de imagens
Computer vision
Data mining
Descoberta de conhecimento em imagens
Image analysis
Image understanding
Mineração de dados
Shape analysis
Visão computacional
title_short Técnicas de mineração de dados para análise de imagens
title_full Técnicas de mineração de dados para análise de imagens
title_fullStr Técnicas de mineração de dados para análise de imagens
title_full_unstemmed Técnicas de mineração de dados para análise de imagens
title_sort Técnicas de mineração de dados para análise de imagens
author Consularo, Luís Augusto
author_facet Consularo, Luís Augusto
author_role author
dc.contributor.none.fl_str_mv Costa, Luciano da Fontoura
dc.contributor.author.fl_str_mv Consularo, Luís Augusto
dc.subject.por.fl_str_mv Análise de formas
Análise de imagens
Computer vision
Data mining
Descoberta de conhecimento em imagens
Image analysis
Image understanding
Mineração de dados
Shape analysis
Visão computacional
topic Análise de formas
Análise de imagens
Computer vision
Data mining
Descoberta de conhecimento em imagens
Image analysis
Image understanding
Mineração de dados
Shape analysis
Visão computacional
description Imagens codificadas por matrizes de intensidade são tipicamente representadas por grande quantidade de dados. Embora existam inúmeras abordagens para análise de imagens, o conhecimento sobre problemas específicos é raramente considerado. Este trabalho trata sobre problemas de análises de imagens cujas soluções dependem do conhecimento sobre os dados envolvidos na aplicação específica. Para isso, utiliza técnicas de mineração de dados para modelar as respostas humanas obtidas de experimentos psicofísicos. Dois problemas de análise de imagens são apresentados: (1) a análise de formas e (2) a análise pictórica. No primeiro problema (1), formas de neurônios da retina (neurônios ganglionares de gato) são segmentadas e seus contornos submetidos a uma calibração dos parâmetros de curvatura considerando a segmentação manual de um especialista. Outros descritores, tais como esqueletos multi-escalas são explorados para eventual uso e avaliação da abordagem. No segundo problema (2), a análise pictórica de imagens de home-pages serve para avaliar critérios estéticos a partir de medidas de complexidade, contraste e textura. O sistema generaliza as respostas por um experimento psicofísico realizados com humanos. Os resultados objetivos com as duas abordagens revelaram-se promissores, surpreendentes e com ampla aplicabilidade.
publishDate 2000
dc.date.none.fl_str_mv 2000-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14012009-101451/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14012009-101451/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256953827360768