Teoria de Ramsey para circuitos e caminhos

Detalhes bibliográficos
Autor(a) principal: Benevides, Fabricio Siqueira
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-11062007-012359/
Resumo: Os principais objetos de estudo neste trabalho são os números de Ramsey para circuitos e o lema da regularidade de Szemerédi. Dados grafos $L_1, \\ldots, L_k$, o número de Ramsey $R(L_1,\\ldots,L_k)$ é o menor inteiro $N$ tal que, para qualquer coloração com $k$ cores das arestas do grafo completo com $N$ vértices, existe uma cor $i$ para a qual a classe de cor correspondente contém $L_i$ como um subgrafo. Estaremos especialmente interessados no caso em que os grafos $L_i$ são circuitos. Obtemos um resultado original solucionando o caso em que $k=3$ e $L_i$ são circuitos pares de mesmo tamanho.
id USP_e5a9be0e118f4ba0314736e8e887be37
oai_identifier_str oai:teses.usp.br:tde-11062007-012359
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Teoria de Ramsey para circuitos e caminhosRamsey theory for cycles and pathscaminhoscircuitoscyclespathsRamseyRamseyregularidaderegularityOs principais objetos de estudo neste trabalho são os números de Ramsey para circuitos e o lema da regularidade de Szemerédi. Dados grafos $L_1, \\ldots, L_k$, o número de Ramsey $R(L_1,\\ldots,L_k)$ é o menor inteiro $N$ tal que, para qualquer coloração com $k$ cores das arestas do grafo completo com $N$ vértices, existe uma cor $i$ para a qual a classe de cor correspondente contém $L_i$ como um subgrafo. Estaremos especialmente interessados no caso em que os grafos $L_i$ são circuitos. Obtemos um resultado original solucionando o caso em que $k=3$ e $L_i$ são circuitos pares de mesmo tamanho.The main objects of interest in this work are the Ramsey numbers for cycles and the Szemerédi regularity lemma. For graphs $L_1, \\ldots, L_k$, the Ramsey number $R(L_1, \\ldots,L_k)$ is the minimum integer $N$ such that for any edge-coloring of the complete graph with~$N$ vertices by $k$ colors there exists a color $i$ for which the corresponding color class contains~$L_i$ as a subgraph. We are specially interested in the case where the graphs $L_i$ are cycles. We obtained an original result solving the case where $k=3$ and $L_i$ are even cycles of the same length.Biblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuBenevides, Fabricio Siqueira2007-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-11062007-012359/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-11062007-012359Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Teoria de Ramsey para circuitos e caminhos
Ramsey theory for cycles and paths
title Teoria de Ramsey para circuitos e caminhos
spellingShingle Teoria de Ramsey para circuitos e caminhos
Benevides, Fabricio Siqueira
caminhos
circuitos
cycles
paths
Ramsey
Ramsey
regularidade
regularity
title_short Teoria de Ramsey para circuitos e caminhos
title_full Teoria de Ramsey para circuitos e caminhos
title_fullStr Teoria de Ramsey para circuitos e caminhos
title_full_unstemmed Teoria de Ramsey para circuitos e caminhos
title_sort Teoria de Ramsey para circuitos e caminhos
author Benevides, Fabricio Siqueira
author_facet Benevides, Fabricio Siqueira
author_role author
dc.contributor.none.fl_str_mv Kohayakawa, Yoshiharu
dc.contributor.author.fl_str_mv Benevides, Fabricio Siqueira
dc.subject.por.fl_str_mv caminhos
circuitos
cycles
paths
Ramsey
Ramsey
regularidade
regularity
topic caminhos
circuitos
cycles
paths
Ramsey
Ramsey
regularidade
regularity
description Os principais objetos de estudo neste trabalho são os números de Ramsey para circuitos e o lema da regularidade de Szemerédi. Dados grafos $L_1, \\ldots, L_k$, o número de Ramsey $R(L_1,\\ldots,L_k)$ é o menor inteiro $N$ tal que, para qualquer coloração com $k$ cores das arestas do grafo completo com $N$ vértices, existe uma cor $i$ para a qual a classe de cor correspondente contém $L_i$ como um subgrafo. Estaremos especialmente interessados no caso em que os grafos $L_i$ são circuitos. Obtemos um resultado original solucionando o caso em que $k=3$ e $L_i$ são circuitos pares de mesmo tamanho.
publishDate 2007
dc.date.none.fl_str_mv 2007-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-11062007-012359/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-11062007-012359/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256863872122880