Modelos elípticos multiníveis

Detalhes bibliográficos
Autor(a) principal: Manghi, Roberto Ferreira
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-18072012-233908/
Resumo: Os modelos multiníveis representam uma classe de modelos utilizada para ajustes de dados que apresentam estrutura de hierarquia. O presente trabalho propõe uma generalizacão dos modelos normais multiníveis, denominada modelos elípticos multiníveis. Esta proposta sugere o uso de distribuicões de probabilidade pertencentes à classe elíptica, envolvendo portanto todas as distribuições contínuas simétricas, incluindo a distribuição normal como caso particular. As distribuições elípticas podem apresentar caudas mais leves ou mais pesadas que as caudas da distribuição normal. No caso da presença de observações aberrantes, é sugerido o uso de distribuições com caudas pesadas no intuito de obter um melhor ajuste do modelo aos dados considerados discrepantes. Nesta dissertação, alguns aspectos dos modelos elípticos multiníveis são desenvolvidos, como o processo de estimação dos parâmetros via máxima verossimilhança, testes de hipóteses para os efeitos fixos e parâmetros de variância e covariância e análise de resíduos para verificação de características relacionadas aos ajustes e às suposições estabelecidas.
id USP_e5c309e73fe67a7cd784c21dfd85eb2b
oai_identifier_str oai:teses.usp.br:tde-18072012-233908
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos elípticos multiníveisMultilevel elliptical modelselliptical modelsestimacão robustamodelos elípticosmodelos multiníveismultilevel modelsrobust estimationOs modelos multiníveis representam uma classe de modelos utilizada para ajustes de dados que apresentam estrutura de hierarquia. O presente trabalho propõe uma generalizacão dos modelos normais multiníveis, denominada modelos elípticos multiníveis. Esta proposta sugere o uso de distribuicões de probabilidade pertencentes à classe elíptica, envolvendo portanto todas as distribuições contínuas simétricas, incluindo a distribuição normal como caso particular. As distribuições elípticas podem apresentar caudas mais leves ou mais pesadas que as caudas da distribuição normal. No caso da presença de observações aberrantes, é sugerido o uso de distribuições com caudas pesadas no intuito de obter um melhor ajuste do modelo aos dados considerados discrepantes. Nesta dissertação, alguns aspectos dos modelos elípticos multiníveis são desenvolvidos, como o processo de estimação dos parâmetros via máxima verossimilhança, testes de hipóteses para os efeitos fixos e parâmetros de variância e covariância e análise de resíduos para verificação de características relacionadas aos ajustes e às suposições estabelecidas.Multilevel models represent a class of models used to adjust data which have hierarchical structure. The present work proposes a generalization of the multilevel normal models, named multilevel elliptical models. This proposal suggests the use of probability distributions belonging to the elliptical class, thus involving all symmetric continuous distributions, including the normal distribution as a particular case. Elliptical distributions may have lighter or heavier tails than the normal ones. In case of presence of outlying observations, it is suggested the use of heavy-tailed distributions in order to obtain a better fitted model to the discrepant observations. In this dissertation some aspects of the multilevel elliptical models are developed, such as the process of parameter estimation by maximum likelihood, hypothesis tests for fixed effects and variance-covariance parameters and residual analysis to check features related to the fitting and established assumptions.Biblioteca Digitais de Teses e Dissertações da USPPaula, Gilberto AlvarengaManghi, Roberto Ferreira2011-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-18072012-233908/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T21:05:02Zoai:teses.usp.br:tde-18072012-233908Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T21:05:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos elípticos multiníveis
Multilevel elliptical models
title Modelos elípticos multiníveis
spellingShingle Modelos elípticos multiníveis
Manghi, Roberto Ferreira
elliptical models
estimacão robusta
modelos elípticos
modelos multiníveis
multilevel models
robust estimation
title_short Modelos elípticos multiníveis
title_full Modelos elípticos multiníveis
title_fullStr Modelos elípticos multiníveis
title_full_unstemmed Modelos elípticos multiníveis
title_sort Modelos elípticos multiníveis
author Manghi, Roberto Ferreira
author_facet Manghi, Roberto Ferreira
author_role author
dc.contributor.none.fl_str_mv Paula, Gilberto Alvarenga
dc.contributor.author.fl_str_mv Manghi, Roberto Ferreira
dc.subject.por.fl_str_mv elliptical models
estimacão robusta
modelos elípticos
modelos multiníveis
multilevel models
robust estimation
topic elliptical models
estimacão robusta
modelos elípticos
modelos multiníveis
multilevel models
robust estimation
description Os modelos multiníveis representam uma classe de modelos utilizada para ajustes de dados que apresentam estrutura de hierarquia. O presente trabalho propõe uma generalizacão dos modelos normais multiníveis, denominada modelos elípticos multiníveis. Esta proposta sugere o uso de distribuicões de probabilidade pertencentes à classe elíptica, envolvendo portanto todas as distribuições contínuas simétricas, incluindo a distribuição normal como caso particular. As distribuições elípticas podem apresentar caudas mais leves ou mais pesadas que as caudas da distribuição normal. No caso da presença de observações aberrantes, é sugerido o uso de distribuições com caudas pesadas no intuito de obter um melhor ajuste do modelo aos dados considerados discrepantes. Nesta dissertação, alguns aspectos dos modelos elípticos multiníveis são desenvolvidos, como o processo de estimação dos parâmetros via máxima verossimilhança, testes de hipóteses para os efeitos fixos e parâmetros de variância e covariância e análise de resíduos para verificação de características relacionadas aos ajustes e às suposições estabelecidas.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-18072012-233908/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-18072012-233908/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257103248392192