Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional

Detalhes bibliográficos
Autor(a) principal: Martins, Maria Cristina
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/
Resumo: Processos estocásticos complexos são muitas vezes utilizados em modelagem, com o intuito de capturar uma maior proporção das principais características dos sistemas biológicos. A descrição do comportamento desses sistemas tem sido realizada por muitos amostradores baseados na distribuição a posteriori de Monte Carlo. Modelos probabilísticos que descrevem esses processos podem levar a funções de verossimilhança computacionalmente intratáveis, impossibilitando a utilização de métodos de inferência estatística clássicos e os baseados em amostragem por meio de MCMC. A Computação Bayesiana Aproximada (ABC) é considerada um novo método de inferência com base em estatísticas de resumo, ou seja, valores calculados a partir do conjunto de dados (média, moda, variância, etc.). Essa metodologia combina muitas das vantagens da eficiência computacional de processos baseados em estatísticas de resumo com inferência estatística bayesiana uma vez que, funciona bem para pequenas amostras e possibilita incorporar informações passadas em um parâmetro e formar uma priori para análise futura. Nesse trabalho foi realizada uma comparação entre os métodos de estimação, clássico, bayesiano e ABC, para estudos de simulação de modelos simples e para análise de dados de dinâmica populacional. Foram implementadas no software R as distâncias modular e do máximo como alternativas de função distância a serem utilizadas no ABC, além do algoritmo ABC de rejeição para equações diferenciais estocásticas. Foi proposto sua utilização para a resolução de problemas envolvendo modelos de interação populacional. Os estudos de simulação mostraram melhores resultados quando utilizadas as distâncias euclidianas e do máximo juntamente com distribuições a priori informativas. Para os sistemas dinâmicos, a estimação por meio do ABC apresentou resultados mais próximos dos verdadeiros bem como menores discrepâncias, podendo assim ser utilizado como um método alternativo de estimação.
id USP_e5fb2d9c1ab28da2e00aabfb6040e1c2
oai_identifier_str oai:teses.usp.br:tde-21032018-135852
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Computação bayesiana aproximada: aplicações em modelos de dinâmica populacionalApproximate Bayesian Computation: applications in population dynamics modelsDistribuição a posterioriEquações diferenciais estocásticasEstatísticas de resumoInferência livre de verossimilhançaLikelihood-free inferencePosterior distributionStochastic differential equationsSummary statisticsProcessos estocásticos complexos são muitas vezes utilizados em modelagem, com o intuito de capturar uma maior proporção das principais características dos sistemas biológicos. A descrição do comportamento desses sistemas tem sido realizada por muitos amostradores baseados na distribuição a posteriori de Monte Carlo. Modelos probabilísticos que descrevem esses processos podem levar a funções de verossimilhança computacionalmente intratáveis, impossibilitando a utilização de métodos de inferência estatística clássicos e os baseados em amostragem por meio de MCMC. A Computação Bayesiana Aproximada (ABC) é considerada um novo método de inferência com base em estatísticas de resumo, ou seja, valores calculados a partir do conjunto de dados (média, moda, variância, etc.). Essa metodologia combina muitas das vantagens da eficiência computacional de processos baseados em estatísticas de resumo com inferência estatística bayesiana uma vez que, funciona bem para pequenas amostras e possibilita incorporar informações passadas em um parâmetro e formar uma priori para análise futura. Nesse trabalho foi realizada uma comparação entre os métodos de estimação, clássico, bayesiano e ABC, para estudos de simulação de modelos simples e para análise de dados de dinâmica populacional. Foram implementadas no software R as distâncias modular e do máximo como alternativas de função distância a serem utilizadas no ABC, além do algoritmo ABC de rejeição para equações diferenciais estocásticas. Foi proposto sua utilização para a resolução de problemas envolvendo modelos de interação populacional. Os estudos de simulação mostraram melhores resultados quando utilizadas as distâncias euclidianas e do máximo juntamente com distribuições a priori informativas. Para os sistemas dinâmicos, a estimação por meio do ABC apresentou resultados mais próximos dos verdadeiros bem como menores discrepâncias, podendo assim ser utilizado como um método alternativo de estimação.Complex stochastic processes are often used in modeling in order to capture a greater proportion of the main features of natural systems. The description of the behavior of these systems has been made by many Monte Carlo based samplers of the posterior distribution. Probabilistic models describing these processes can lead to computationally intractable likelihood functions, precluding the use of classical statistical inference methods and those based on sampling by MCMC. The Approxi- mate Bayesian Computation (ABC) is considered a new method for inference based on summary statistics, that is, calculated values from the data set (mean, mode, variance, etc.). This methodology combines many of the advantages of computatio- nal efficiency of processes based on summary statistics with the Bayesian statistical inference since, it works well for small samples and it makes possible to incorporate past information in a parameter and form a prior distribution for future analysis. In this work a comparison between, classical, Bayesian and ABC, estimation methods was made for simulation studies considering simple models and for data analysis of population dynamics. It was implemented in the R software the modular and maxi- mum as alternative distances function to be used in the ABC, besides the rejection ABC algorithm for stochastic differential equations. It was proposed to use it to solve problems involving models of population interaction. The simulation studies showed better results when using the Euclidean and maximum distances together with informative prior distributions. For the dynamic systems, the ABC estimation presented results closer to the real ones as well as smaller discrepancies and could thus be used as an alternative estimation method.Biblioteca Digitais de Teses e Dissertações da USPLeandro, Roseli AparecidaMartins, Maria Cristina2017-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-09-20T19:49:24Zoai:teses.usp.br:tde-21032018-135852Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T19:49:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
Approximate Bayesian Computation: applications in population dynamics models
title Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
spellingShingle Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
Martins, Maria Cristina
Distribuição a posteriori
Equações diferenciais estocásticas
Estatísticas de resumo
Inferência livre de verossimilhança
Likelihood-free inference
Posterior distribution
Stochastic differential equations
Summary statistics
title_short Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
title_full Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
title_fullStr Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
title_full_unstemmed Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
title_sort Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional
author Martins, Maria Cristina
author_facet Martins, Maria Cristina
author_role author
dc.contributor.none.fl_str_mv Leandro, Roseli Aparecida
dc.contributor.author.fl_str_mv Martins, Maria Cristina
dc.subject.por.fl_str_mv Distribuição a posteriori
Equações diferenciais estocásticas
Estatísticas de resumo
Inferência livre de verossimilhança
Likelihood-free inference
Posterior distribution
Stochastic differential equations
Summary statistics
topic Distribuição a posteriori
Equações diferenciais estocásticas
Estatísticas de resumo
Inferência livre de verossimilhança
Likelihood-free inference
Posterior distribution
Stochastic differential equations
Summary statistics
description Processos estocásticos complexos são muitas vezes utilizados em modelagem, com o intuito de capturar uma maior proporção das principais características dos sistemas biológicos. A descrição do comportamento desses sistemas tem sido realizada por muitos amostradores baseados na distribuição a posteriori de Monte Carlo. Modelos probabilísticos que descrevem esses processos podem levar a funções de verossimilhança computacionalmente intratáveis, impossibilitando a utilização de métodos de inferência estatística clássicos e os baseados em amostragem por meio de MCMC. A Computação Bayesiana Aproximada (ABC) é considerada um novo método de inferência com base em estatísticas de resumo, ou seja, valores calculados a partir do conjunto de dados (média, moda, variância, etc.). Essa metodologia combina muitas das vantagens da eficiência computacional de processos baseados em estatísticas de resumo com inferência estatística bayesiana uma vez que, funciona bem para pequenas amostras e possibilita incorporar informações passadas em um parâmetro e formar uma priori para análise futura. Nesse trabalho foi realizada uma comparação entre os métodos de estimação, clássico, bayesiano e ABC, para estudos de simulação de modelos simples e para análise de dados de dinâmica populacional. Foram implementadas no software R as distâncias modular e do máximo como alternativas de função distância a serem utilizadas no ABC, além do algoritmo ABC de rejeição para equações diferenciais estocásticas. Foi proposto sua utilização para a resolução de problemas envolvendo modelos de interação populacional. Os estudos de simulação mostraram melhores resultados quando utilizadas as distâncias euclidianas e do máximo juntamente com distribuições a priori informativas. Para os sistemas dinâmicos, a estimação por meio do ABC apresentou resultados mais próximos dos verdadeiros bem como menores discrepâncias, podendo assim ser utilizado como um método alternativo de estimação.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257237172518912