Otimização bioinspirada para apoio à geração de dados de teste para software concorrente
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-134353/ |
Resumo: | A programação concorrente está cada vez mais presente nas aplicações modernas. Embora esse modelo de programação forneça maior desempenho e melhor aproveitamento dos recursos disponíveis, os mecanismos de interação entre processos/threads resultam em maior desafio para atividade de teste. O não determinismo presente nessas aplicações é um dos principais desafios na atividade de teste, uma vez que ainda com uma mesma entrada de teste o programa concorrente pode executar caminhos distintos, os quais podem ou não apresentar defeitos. A geração automática de dados de teste pode contribuir para essa atividade garantindo maior rapidez e confiabilidade no teste de software. Neste trabalho, a geração automática de dados de teste é explorada para o domínio de programas concorrentes por meio de uma técnica bioinspiradas de otimização, o Algoritmo Genético. Este estudo propõe uma abordagem de geração de dados para programas concorrentes denominada BioConcST. Além disso, propõe-se um novo operador de seleção de indivíduos de teste utilizando lógica fuzzy, denominado FuzzyST. Essas contribuições são avaliadas em um estudo experimental utilizado para validar as abordagens propostas. Os resultados obtidos do experimento demonstraram que a BioConcST é mais promissora que as demais abordagens utilizadas em todos os níveis analisados. Além disso, o operador FuzzyST também obteve os melhores resultados juntamente com os operadores Elitismo e Torneio. Contudo, o operador FuzzyST mostrou-se mais indicado para programas concorrentes de maior complexidade. |
id |
USP_e7d513e5c9c362585f907daf939978b4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17082021-134353 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrenteBio-inspired optimization to support the test data generation for concurrent softwareAlgoritmo genéticoBio- inspired optimizationConcurrent programsGenetic algorithmGeração de dados de testeOtimização bioinspiradaProgramas concorrentesSoftware testingTest data generationTeste de softwareA programação concorrente está cada vez mais presente nas aplicações modernas. Embora esse modelo de programação forneça maior desempenho e melhor aproveitamento dos recursos disponíveis, os mecanismos de interação entre processos/threads resultam em maior desafio para atividade de teste. O não determinismo presente nessas aplicações é um dos principais desafios na atividade de teste, uma vez que ainda com uma mesma entrada de teste o programa concorrente pode executar caminhos distintos, os quais podem ou não apresentar defeitos. A geração automática de dados de teste pode contribuir para essa atividade garantindo maior rapidez e confiabilidade no teste de software. Neste trabalho, a geração automática de dados de teste é explorada para o domínio de programas concorrentes por meio de uma técnica bioinspiradas de otimização, o Algoritmo Genético. Este estudo propõe uma abordagem de geração de dados para programas concorrentes denominada BioConcST. Além disso, propõe-se um novo operador de seleção de indivíduos de teste utilizando lógica fuzzy, denominado FuzzyST. Essas contribuições são avaliadas em um estudo experimental utilizado para validar as abordagens propostas. Os resultados obtidos do experimento demonstraram que a BioConcST é mais promissora que as demais abordagens utilizadas em todos os níveis analisados. Além disso, o operador FuzzyST também obteve os melhores resultados juntamente com os operadores Elitismo e Torneio. Contudo, o operador FuzzyST mostrou-se mais indicado para programas concorrentes de maior complexidade.Concurrent programming is increasingly present in modern applications. Although this programming model provides greater performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The non-determinism present in these applications is one of the main challenges in the test activity since even with the same test input, the concurrent program can execute different paths, which may or may not present defects. The automatic generation of test data can contribute to this activity, ensuring greater speed and reliability in software testing. In this work, the automatic test data generation is explored for the domain of concurrent programs through a bioinspired optimization technique, the Genetic Algorithm. We propose a test data generation approach for concurrent programs called BioConcST. Also, we propose a new operator for selecting test subjects using fuzzy logic, called FuzzyST. We evaluated these approaches in an experimental study to validate. The results obtained from the experiment showed that BioConcST is more promising than the other approaches used at all levels analyzed. The operator FuzzyST also obtained the best results, together with the Elitism and Tournament operators. Nevertheless, the FuzzyST operator proved to be more suitable for concurrent programs of greater complexity.Biblioteca Digitais de Teses e Dissertações da USPSouza, Simone do Rocio Senger deVilela, Ricardo Ferreira2021-05-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-134353/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-08-17T16:50:02Zoai:teses.usp.br:tde-17082021-134353Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-17T16:50:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente Bio-inspired optimization to support the test data generation for concurrent software |
title |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente |
spellingShingle |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente Vilela, Ricardo Ferreira Algoritmo genético Bio- inspired optimization Concurrent programs Genetic algorithm Geração de dados de teste Otimização bioinspirada Programas concorrentes Software testing Test data generation Teste de software |
title_short |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente |
title_full |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente |
title_fullStr |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente |
title_full_unstemmed |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente |
title_sort |
Otimização bioinspirada para apoio à geração de dados de teste para software concorrente |
author |
Vilela, Ricardo Ferreira |
author_facet |
Vilela, Ricardo Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Simone do Rocio Senger de |
dc.contributor.author.fl_str_mv |
Vilela, Ricardo Ferreira |
dc.subject.por.fl_str_mv |
Algoritmo genético Bio- inspired optimization Concurrent programs Genetic algorithm Geração de dados de teste Otimização bioinspirada Programas concorrentes Software testing Test data generation Teste de software |
topic |
Algoritmo genético Bio- inspired optimization Concurrent programs Genetic algorithm Geração de dados de teste Otimização bioinspirada Programas concorrentes Software testing Test data generation Teste de software |
description |
A programação concorrente está cada vez mais presente nas aplicações modernas. Embora esse modelo de programação forneça maior desempenho e melhor aproveitamento dos recursos disponíveis, os mecanismos de interação entre processos/threads resultam em maior desafio para atividade de teste. O não determinismo presente nessas aplicações é um dos principais desafios na atividade de teste, uma vez que ainda com uma mesma entrada de teste o programa concorrente pode executar caminhos distintos, os quais podem ou não apresentar defeitos. A geração automática de dados de teste pode contribuir para essa atividade garantindo maior rapidez e confiabilidade no teste de software. Neste trabalho, a geração automática de dados de teste é explorada para o domínio de programas concorrentes por meio de uma técnica bioinspiradas de otimização, o Algoritmo Genético. Este estudo propõe uma abordagem de geração de dados para programas concorrentes denominada BioConcST. Além disso, propõe-se um novo operador de seleção de indivíduos de teste utilizando lógica fuzzy, denominado FuzzyST. Essas contribuições são avaliadas em um estudo experimental utilizado para validar as abordagens propostas. Os resultados obtidos do experimento demonstraram que a BioConcST é mais promissora que as demais abordagens utilizadas em todos os níveis analisados. Além disso, o operador FuzzyST também obteve os melhores resultados juntamente com os operadores Elitismo e Torneio. Contudo, o operador FuzzyST mostrou-se mais indicado para programas concorrentes de maior complexidade. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-134353/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-134353/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257046808788992 |