Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/12/12139/tde-16092004-121634/ |
Resumo: | Estudos com o objetivo de prever insolvência de empresas e que fazem uso de técnicas estatísticas modernas são conduzidos desde a década de 1960. Esta linha de pesquisa, que inicialmente usou técnicas univariadas, e em seguida incorporou as análises multivariadas, hoje emprega largamente técnicas que fazem uso de inteligência artificial e que necessitam uma grande capacidade de processamento computacional. Esta evolução trouxe melhorias contínuas aos resultados alcançados e hoje é possível afirmar que os demonstrativos financeiros de empresas quando analisados adequadamente são uma fonte importante de informação para a previsão de insolvência. Esta pesquisa teve como principal objetivo desenvolver e comparar modelos estatísticos usando as técnicas de Análise Discriminante Linear, Regressão Logística e Redes Neurais Artificiais a fim de investigar qual delas oferece os melhores resultados. A amostra foi composta por 40 empresas, divididas em dois grupos: o primeiro com empresas formalmente insolventes segundo os critérios da legislação brasileira, e o segundo com empresas sem tais problemas. Foram usadas inicialmente 16 variáveis para predição e empregou-se um critério de seleção de variáveis baseado nos melhores subconjuntos possíveis ao invés do stepwise. Foi tomado especial cuidado com os pré-requisitos das técnicas, sobretudo da Análise Discriminante, como normalidade e ausência de multicolinearidade das variáveis independentes. Os resultados das previsões obtidas com os modelos foram coerentes com o esperado, ou seja, a Análise Discriminante teve um desempenho inferior à Regressão Logística que também foi superada pelas Redes Neurais Artificiais. |
id |
USP_e8bd1836e462005cf90b08c6b1d9436e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16092004-121634 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neuraisBankruptcy prediction in brazilian companies with discriminant analysis, logistic regression and artificial neural networksanálise discriminanteartificial neural networksbankruptcydiscriminant analysislogistic regressionpredictionprevisão de insolvênciaredes neuraisregressão logísticaEstudos com o objetivo de prever insolvência de empresas e que fazem uso de técnicas estatísticas modernas são conduzidos desde a década de 1960. Esta linha de pesquisa, que inicialmente usou técnicas univariadas, e em seguida incorporou as análises multivariadas, hoje emprega largamente técnicas que fazem uso de inteligência artificial e que necessitam uma grande capacidade de processamento computacional. Esta evolução trouxe melhorias contínuas aos resultados alcançados e hoje é possível afirmar que os demonstrativos financeiros de empresas quando analisados adequadamente são uma fonte importante de informação para a previsão de insolvência. Esta pesquisa teve como principal objetivo desenvolver e comparar modelos estatísticos usando as técnicas de Análise Discriminante Linear, Regressão Logística e Redes Neurais Artificiais a fim de investigar qual delas oferece os melhores resultados. A amostra foi composta por 40 empresas, divididas em dois grupos: o primeiro com empresas formalmente insolventes segundo os critérios da legislação brasileira, e o segundo com empresas sem tais problemas. Foram usadas inicialmente 16 variáveis para predição e empregou-se um critério de seleção de variáveis baseado nos melhores subconjuntos possíveis ao invés do stepwise. Foi tomado especial cuidado com os pré-requisitos das técnicas, sobretudo da Análise Discriminante, como normalidade e ausência de multicolinearidade das variáveis independentes. Os resultados das previsões obtidas com os modelos foram coerentes com o esperado, ou seja, a Análise Discriminante teve um desempenho inferior à Regressão Logística que também foi superada pelas Redes Neurais Artificiais.Researches in bankruptcy prediction of companies that make use of modern statistics techniques are being held since the 1960s. This branch of study, which initially employed univariate techniques, and then assimilated the multivariate techniques today uses artificial intelligence, a techniques that needs a great computational processing capability. This evolution brought continuing improvements to the results achieved and today is possible to say that financial statements when properly analyzed are a good source of information to the prediction of financial distress. This research aimed mainly the development of prediction models using Discriminant Analysis, Logistic Regression and Artificial Neural Networks so that they could be compared in terms of predictive capabilities. The sample consisted of 40 firms divided in 2 groups (bankrupt and non bankrupt companies) according to the Brazilian bankruptcy law. The 16 initial predictors were selected to enter the model according to the best subsets procedure in order than the stepwise procedure. Special attention was taken to accomplish the pre-requisites of the techniques, above all the Discriminant Analysis, like normality and lack of multicollinearity of the independent variables. The findings of the predictions were reasonable and according to what was expected: the Discriminant Analysis was outperformed by the Logistic Regression that was also outperformed by the Artificial Neural Networks.Biblioteca Digitais de Teses e Dissertações da USPZwicker, RonaldoCastro Junior, Francisco Henrique Figueiredo de2003-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/12/12139/tde-16092004-121634/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:49Zoai:teses.usp.br:tde-16092004-121634Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais Bankruptcy prediction in brazilian companies with discriminant analysis, logistic regression and artificial neural networks |
title |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais |
spellingShingle |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais Castro Junior, Francisco Henrique Figueiredo de análise discriminante artificial neural networks bankruptcy discriminant analysis logistic regression prediction previsão de insolvência redes neurais regressão logística |
title_short |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais |
title_full |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais |
title_fullStr |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais |
title_full_unstemmed |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais |
title_sort |
Previsão de insolvência de empresas brasileiras usando análise discriminante, regressão logística e redes neurais |
author |
Castro Junior, Francisco Henrique Figueiredo de |
author_facet |
Castro Junior, Francisco Henrique Figueiredo de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Zwicker, Ronaldo |
dc.contributor.author.fl_str_mv |
Castro Junior, Francisco Henrique Figueiredo de |
dc.subject.por.fl_str_mv |
análise discriminante artificial neural networks bankruptcy discriminant analysis logistic regression prediction previsão de insolvência redes neurais regressão logística |
topic |
análise discriminante artificial neural networks bankruptcy discriminant analysis logistic regression prediction previsão de insolvência redes neurais regressão logística |
description |
Estudos com o objetivo de prever insolvência de empresas e que fazem uso de técnicas estatísticas modernas são conduzidos desde a década de 1960. Esta linha de pesquisa, que inicialmente usou técnicas univariadas, e em seguida incorporou as análises multivariadas, hoje emprega largamente técnicas que fazem uso de inteligência artificial e que necessitam uma grande capacidade de processamento computacional. Esta evolução trouxe melhorias contínuas aos resultados alcançados e hoje é possível afirmar que os demonstrativos financeiros de empresas quando analisados adequadamente são uma fonte importante de informação para a previsão de insolvência. Esta pesquisa teve como principal objetivo desenvolver e comparar modelos estatísticos usando as técnicas de Análise Discriminante Linear, Regressão Logística e Redes Neurais Artificiais a fim de investigar qual delas oferece os melhores resultados. A amostra foi composta por 40 empresas, divididas em dois grupos: o primeiro com empresas formalmente insolventes segundo os critérios da legislação brasileira, e o segundo com empresas sem tais problemas. Foram usadas inicialmente 16 variáveis para predição e empregou-se um critério de seleção de variáveis baseado nos melhores subconjuntos possíveis ao invés do stepwise. Foi tomado especial cuidado com os pré-requisitos das técnicas, sobretudo da Análise Discriminante, como normalidade e ausência de multicolinearidade das variáveis independentes. Os resultados das previsões obtidas com os modelos foram coerentes com o esperado, ou seja, a Análise Discriminante teve um desempenho inferior à Regressão Logística que também foi superada pelas Redes Neurais Artificiais. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-09-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/12/12139/tde-16092004-121634/ |
url |
http://www.teses.usp.br/teses/disponiveis/12/12139/tde-16092004-121634/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257078346809344 |