Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19042013-140124/ |
Resumo: | O problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhos |
id |
USP_e9410d9c19611d72c48fd719b6405a59 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19042013-140124 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedrosSparse convex quadratic programming methods and their applications in projections onto poliedraLinearly constrained minizationMinimização com restrições linearesProgramação quadrática convexa esparsaProjeção esparsaSparse convex quadratic programmingSparse projectionO problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhosThe linearly constrained minimization problem is important, not only for the problem itself, that arises in several areas, but because it is used as a subproblem in order to solve more general nonlinear programming problems. GENLIN is an efficient method for solving small and medium scaled linearly constrained minimization problems. To implement a similar method to solve large scale problems, it is necessary to have an efficient method to solve sparse projection problems onto linear constraints. The problem of projecting a point onto a set of linear constraints can be written as a convex quadratic programming problem. In this work, we study and implement sparse methods to solve box constrained convex quadratic programming problems, in particular the classical Moré-Toraldo method and the NQC \"method\". The Moré-Toraldo method uses the Conjugate Gradient method to explore the face of the feasible region defined by the current iterate, and the Projected Gradient method to move to a different face. The NQC \"method\" uses the Spectral Projected Gradient method to define the face in which it is going to work, and the Newton method to calculate the minimizer of the quadratic function reduced to this face. We used the sparse methods Moré-Toraldo and NQC to solve the projection problem of GENLIN and we compared their performancesBiblioteca Digitais de Teses e Dissertações da USPAndretta, MarinaPolo, Jeinny Maria Peralta2013-03-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-19042013-140124/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:35Zoai:teses.usp.br:tde-19042013-140124Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros Sparse convex quadratic programming methods and their applications in projections onto poliedra |
title |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros |
spellingShingle |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros Polo, Jeinny Maria Peralta Linearly constrained minization Minimização com restrições lineares Programação quadrática convexa esparsa Projeção esparsa Sparse convex quadratic programming Sparse projection |
title_short |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros |
title_full |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros |
title_fullStr |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros |
title_full_unstemmed |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros |
title_sort |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros |
author |
Polo, Jeinny Maria Peralta |
author_facet |
Polo, Jeinny Maria Peralta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andretta, Marina |
dc.contributor.author.fl_str_mv |
Polo, Jeinny Maria Peralta |
dc.subject.por.fl_str_mv |
Linearly constrained minization Minimização com restrições lineares Programação quadrática convexa esparsa Projeção esparsa Sparse convex quadratic programming Sparse projection |
topic |
Linearly constrained minization Minimização com restrições lineares Programação quadrática convexa esparsa Projeção esparsa Sparse convex quadratic programming Sparse projection |
description |
O problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhos |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19042013-140124/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19042013-140124/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257166312898560 |