Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-12092014-120618/ |
Resumo: | Estudamos sistemas de passeios aleatórios sobre os vértices de um grafo completo. Inicialmente há uma partícula em cada vértice do grafo das quais somente uma está ativa, as outras estão inativas. A partícula ativa realiza um passeio aleatório simples a tempo discreto com tempo de vida que depende do passado do processo, movendo-se ao longo de elos. Quando uma partícula ativa encontra uma inativa, esta se ativa; quando salta sobre um vértice já visitado, morre. O objetivo desta dissertação é estudar a cobertura do grafo completo, ou seja, a proporção de vértices visitados ao fim do processo, quando o número $n$ de vértices tende ao infinito. Analisamos as equações de campo médio para o processo descrito acima, comparando os seus resultados com os do modelo aleatório. Aqui, os resultados do campo médio parecem reproduzir os do modelo aleatório. Depois, apresentamos um estudo similar entre o modelo estocástico e as equações de campo médio para o caso em que cada partícula possui 2 vidas. Finalmente, observamos a cobertura do grafo completo para as equações de campo médio quando o número de vidas por partículas é maior que dois. |
id |
USP_e97d1cc43d793053cc4d70e10d2d3fd4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12092014-120618 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafoMean-field analysis of an epidemic model via random walks on a graphcampo médiocoberturacomplete graphscoveragefrog modelgrafos completosmean fieldmodelo dos sapospasseios aleatóriosrandom walksEstudamos sistemas de passeios aleatórios sobre os vértices de um grafo completo. Inicialmente há uma partícula em cada vértice do grafo das quais somente uma está ativa, as outras estão inativas. A partícula ativa realiza um passeio aleatório simples a tempo discreto com tempo de vida que depende do passado do processo, movendo-se ao longo de elos. Quando uma partícula ativa encontra uma inativa, esta se ativa; quando salta sobre um vértice já visitado, morre. O objetivo desta dissertação é estudar a cobertura do grafo completo, ou seja, a proporção de vértices visitados ao fim do processo, quando o número $n$ de vértices tende ao infinito. Analisamos as equações de campo médio para o processo descrito acima, comparando os seus resultados com os do modelo aleatório. Aqui, os resultados do campo médio parecem reproduzir os do modelo aleatório. Depois, apresentamos um estudo similar entre o modelo estocástico e as equações de campo médio para o caso em que cada partícula possui 2 vidas. Finalmente, observamos a cobertura do grafo completo para as equações de campo médio quando o número de vidas por partículas é maior que dois.We study random walks systems on complete graphs. Initially there is a particle at each vertex of the graph; only one is active and the other are inactive. An active particle performs a discrete-time simple random walk with lifetime depending on the past of the process moving along edges. When an active particle hits an inactive one, the latter is activated. When it jumps on a vertex which has been visited before it dies. The goal of this work is to study the coverage of the complete graph, that is, the proportion of visited vertices at the end of the process, when the number of vertices goes to infinity. We analyze the mean field equations to the process cited above, comparing their results with the ones of the random model. Here the results of the mean field approach seem to reproduce the ones of the random model. After we present a similar study between the stochastic model and mean field approximation to the case that each particle has 2 lifes. Finally we observe the coverage of the complete graph to the mean-field equations when the number of lifes by particle is bigger than two.Biblioteca Digitais de Teses e Dissertações da USPMachado, Fabio PratesGava, Renato Jacob2007-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-12092014-120618/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T16:14:03Zoai:teses.usp.br:tde-12092014-120618Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T16:14:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo Mean-field analysis of an epidemic model via random walks on a graph |
title |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo |
spellingShingle |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo Gava, Renato Jacob campo médio cobertura complete graphs coverage frog model grafos completos mean field modelo dos sapos passeios aleatórios random walks |
title_short |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo |
title_full |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo |
title_fullStr |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo |
title_full_unstemmed |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo |
title_sort |
Análise de campo médio para um modelo epidêmico via passeios aleatórios em um grafo |
author |
Gava, Renato Jacob |
author_facet |
Gava, Renato Jacob |
author_role |
author |
dc.contributor.none.fl_str_mv |
Machado, Fabio Prates |
dc.contributor.author.fl_str_mv |
Gava, Renato Jacob |
dc.subject.por.fl_str_mv |
campo médio cobertura complete graphs coverage frog model grafos completos mean field modelo dos sapos passeios aleatórios random walks |
topic |
campo médio cobertura complete graphs coverage frog model grafos completos mean field modelo dos sapos passeios aleatórios random walks |
description |
Estudamos sistemas de passeios aleatórios sobre os vértices de um grafo completo. Inicialmente há uma partícula em cada vértice do grafo das quais somente uma está ativa, as outras estão inativas. A partícula ativa realiza um passeio aleatório simples a tempo discreto com tempo de vida que depende do passado do processo, movendo-se ao longo de elos. Quando uma partícula ativa encontra uma inativa, esta se ativa; quando salta sobre um vértice já visitado, morre. O objetivo desta dissertação é estudar a cobertura do grafo completo, ou seja, a proporção de vértices visitados ao fim do processo, quando o número $n$ de vértices tende ao infinito. Analisamos as equações de campo médio para o processo descrito acima, comparando os seus resultados com os do modelo aleatório. Aqui, os resultados do campo médio parecem reproduzir os do modelo aleatório. Depois, apresentamos um estudo similar entre o modelo estocástico e as equações de campo médio para o caso em que cada partícula possui 2 vidas. Finalmente, observamos a cobertura do grafo completo para as equações de campo médio quando o número de vidas por partículas é maior que dois. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-09-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-12092014-120618/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-12092014-120618/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256991742820352 |