A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks

Detalhes bibliográficos
Autor(a) principal: Martins, Luan Vinicius de Carvalho
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/
Resumo: The usage of Complex Networks has proved to be an excellent tool in reveling prevalent information from complex systems due to its ability to describe spatial, functional, and topological relations among the data. One inherent characteristic of Complex Networks, which is an excellent source of information, is its community structurecommonly defined as a set of nodes more densely connected than to other nodes of the networks. In order to extract this information, many techniques have been proposed. One interesting technique is the Particle Competition method, which is a bio-inspired approach in which a set of particles are inserted into the network and must compete with themselves to capture as many nodes as possible. Competition, here represented as a stochastic dynamic system that controls the particles, is a behavior widely encountered in nature when there is a shortage of resources, such as water, food, or matesthe nodes of the graph are the limited resources each particle must conquer. However, unbalanced communities commonly appear in real complex networks. Although many community detection techniques have been developed, and some of them possess a certain degree of tolerance to unbalance, there is still lacking an explicit and efficient mechanism to treat this problem. In this document, we proposed a Two-Stage Particle Competition model to detect unbalanced communities. At the first stage, named Competition, the particles compete with themselves to occupy as many nodes as possible. At the second stage, a diffusion-like regularization mechanism is introduced to determine the dominance level of each particle at a neighborhood of each node. The two stages work alternatively until the regularization process converges. In the original Particle Competition model, all particles have the same behavior; therefore, there is no way to correctly occupy the communities with different sizes or structures by the particles. In the proposed model, the regularization mechanism makes each particle to have a different behavior according to the network structure. Consequently, communities with different sizes or structures can be correctly detected by the particles. Computer simulations show promising results of the proposed model. Moreover, the regularization mechanism improves both the accuracy and computational speed of the method as fewer iterations are required until convergence when compared to previous Particle Competition methods
id USP_ea34c7d7434b69410539d2df8fcdb20c
oai_identifier_str oai:teses.usp.br:tde-20082020-101929
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex NetworksCompetição de Partícula de Dois Passos para Detecção de Comunidades Desbalanceadas em Redes ComplexasCommunity detectionCompetição de partículaComplex networksComunidades desbalanceadasDetecção de comunidadeParticle competitionRede complexaUnbalanced communityThe usage of Complex Networks has proved to be an excellent tool in reveling prevalent information from complex systems due to its ability to describe spatial, functional, and topological relations among the data. One inherent characteristic of Complex Networks, which is an excellent source of information, is its community structurecommonly defined as a set of nodes more densely connected than to other nodes of the networks. In order to extract this information, many techniques have been proposed. One interesting technique is the Particle Competition method, which is a bio-inspired approach in which a set of particles are inserted into the network and must compete with themselves to capture as many nodes as possible. Competition, here represented as a stochastic dynamic system that controls the particles, is a behavior widely encountered in nature when there is a shortage of resources, such as water, food, or matesthe nodes of the graph are the limited resources each particle must conquer. However, unbalanced communities commonly appear in real complex networks. Although many community detection techniques have been developed, and some of them possess a certain degree of tolerance to unbalance, there is still lacking an explicit and efficient mechanism to treat this problem. In this document, we proposed a Two-Stage Particle Competition model to detect unbalanced communities. At the first stage, named Competition, the particles compete with themselves to occupy as many nodes as possible. At the second stage, a diffusion-like regularization mechanism is introduced to determine the dominance level of each particle at a neighborhood of each node. The two stages work alternatively until the regularization process converges. In the original Particle Competition model, all particles have the same behavior; therefore, there is no way to correctly occupy the communities with different sizes or structures by the particles. In the proposed model, the regularization mechanism makes each particle to have a different behavior according to the network structure. Consequently, communities with different sizes or structures can be correctly detected by the particles. Computer simulations show promising results of the proposed model. Moreover, the regularization mechanism improves both the accuracy and computational speed of the method as fewer iterations are required until convergence when compared to previous Particle Competition methodsO uso de redes complexas provou ser uma excelente ferramenta para revelar informações de sistemas complexos devido à sua capacidade de descrever relações espaciais, funcionais e topológicas entre os dados. Uma característica inerente às redes complexas, que é uma excelente fonte de informações, é sua estrutura de comunidadegeralmente definida como um conjunto de nós mais densamente conectados entre si do que com outros nós da rede. Para extrair essa informação, diversas técnicas foram propostas. Uma técnica interessante é a Competição de Partícula, que é uma abordagem inpirada de fenômenos da natureza na qual um conjunto de partículas é inserido na rede e deve competir entre si para capturar o maior número possível de nós. A competição, aqui representada como um sistema dinâmico estocástico que controla as partículas, é um comportamento amplamente encontrado na natureza quando há escassez de recursos, como água, alimentos ou parceirosos vértices do grafo são esses recursos escassos. No entanto, comunidades desbalanceadas são frequentes em redes complexas reais. Embora muitas técnicas de detecção da comunidade tenham sido desenvolvidas e algumas delas possuam um certo grau de tolerância ao diferentes tamanhos de comunidade, ainda falta um mecanismo explícito e eficiente para tratar esse problema. Neste documento, propomos um modelo de Competição de Partículas em Dois Passos para detectar comunidades desbalanceadas. No primeiro estágio, chamado Competição, as partículas competem entre si para ocupar o maior número possível de nós. No segundo estágio, um mecanismo de regularização do tipo difusão é introduzido para determinar o nível de dominância de cada partícula, baseado no grau de dominância da vizinhança de cada nó. As duas etapas executam alternativamente até o processo de regularização convergir. No modelo original da Competição de Partículas, todas as partículas têm o mesmo comportamento; portanto, não há como cada partícula ocupar corretamente as comunidades com diferentes tamanhos ou estruturas. No modelo proposto, o mecanismo de regularização faz com que cada partícula tenha um comportamento diferente de acordo com a estrutura da rede. Consequentemente, comunidades com diferentes tamanhos ou estruturas podem ser corretamente detectadas pelas partículas. Simulações de computador mostram resultados promissores do modelo proposto. Além disso, o mecanismo de regularização melhora a precisão e a velocidade computacional do método, pois menos iterações são necessárias até a convergência, quando comparado aos métodos anteriores de Competição de Partículas.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoMartins, Luan Vinicius de Carvalho2020-08-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-20T16:31:02Zoai:teses.usp.br:tde-20082020-101929Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-20T16:31:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
Competição de Partícula de Dois Passos para Detecção de Comunidades Desbalanceadas em Redes Complexas
title A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
spellingShingle A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
Martins, Luan Vinicius de Carvalho
Community detection
Competição de partícula
Complex networks
Comunidades desbalanceadas
Detecção de comunidade
Particle competition
Rede complexa
Unbalanced community
title_short A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
title_full A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
title_fullStr A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
title_full_unstemmed A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
title_sort A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
author Martins, Luan Vinicius de Carvalho
author_facet Martins, Luan Vinicius de Carvalho
author_role author
dc.contributor.none.fl_str_mv Liang, Zhao
dc.contributor.author.fl_str_mv Martins, Luan Vinicius de Carvalho
dc.subject.por.fl_str_mv Community detection
Competição de partícula
Complex networks
Comunidades desbalanceadas
Detecção de comunidade
Particle competition
Rede complexa
Unbalanced community
topic Community detection
Competição de partícula
Complex networks
Comunidades desbalanceadas
Detecção de comunidade
Particle competition
Rede complexa
Unbalanced community
description The usage of Complex Networks has proved to be an excellent tool in reveling prevalent information from complex systems due to its ability to describe spatial, functional, and topological relations among the data. One inherent characteristic of Complex Networks, which is an excellent source of information, is its community structurecommonly defined as a set of nodes more densely connected than to other nodes of the networks. In order to extract this information, many techniques have been proposed. One interesting technique is the Particle Competition method, which is a bio-inspired approach in which a set of particles are inserted into the network and must compete with themselves to capture as many nodes as possible. Competition, here represented as a stochastic dynamic system that controls the particles, is a behavior widely encountered in nature when there is a shortage of resources, such as water, food, or matesthe nodes of the graph are the limited resources each particle must conquer. However, unbalanced communities commonly appear in real complex networks. Although many community detection techniques have been developed, and some of them possess a certain degree of tolerance to unbalance, there is still lacking an explicit and efficient mechanism to treat this problem. In this document, we proposed a Two-Stage Particle Competition model to detect unbalanced communities. At the first stage, named Competition, the particles compete with themselves to occupy as many nodes as possible. At the second stage, a diffusion-like regularization mechanism is introduced to determine the dominance level of each particle at a neighborhood of each node. The two stages work alternatively until the regularization process converges. In the original Particle Competition model, all particles have the same behavior; therefore, there is no way to correctly occupy the communities with different sizes or structures by the particles. In the proposed model, the regularization mechanism makes each particle to have a different behavior according to the network structure. Consequently, communities with different sizes or structures can be correctly detected by the particles. Computer simulations show promising results of the proposed model. Moreover, the regularization mechanism improves both the accuracy and computational speed of the method as fewer iterations are required until convergence when compared to previous Particle Competition methods
publishDate 2020
dc.date.none.fl_str_mv 2020-08-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257179186266112