A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/ |
Resumo: | The usage of Complex Networks has proved to be an excellent tool in reveling prevalent information from complex systems due to its ability to describe spatial, functional, and topological relations among the data. One inherent characteristic of Complex Networks, which is an excellent source of information, is its community structurecommonly defined as a set of nodes more densely connected than to other nodes of the networks. In order to extract this information, many techniques have been proposed. One interesting technique is the Particle Competition method, which is a bio-inspired approach in which a set of particles are inserted into the network and must compete with themselves to capture as many nodes as possible. Competition, here represented as a stochastic dynamic system that controls the particles, is a behavior widely encountered in nature when there is a shortage of resources, such as water, food, or matesthe nodes of the graph are the limited resources each particle must conquer. However, unbalanced communities commonly appear in real complex networks. Although many community detection techniques have been developed, and some of them possess a certain degree of tolerance to unbalance, there is still lacking an explicit and efficient mechanism to treat this problem. In this document, we proposed a Two-Stage Particle Competition model to detect unbalanced communities. At the first stage, named Competition, the particles compete with themselves to occupy as many nodes as possible. At the second stage, a diffusion-like regularization mechanism is introduced to determine the dominance level of each particle at a neighborhood of each node. The two stages work alternatively until the regularization process converges. In the original Particle Competition model, all particles have the same behavior; therefore, there is no way to correctly occupy the communities with different sizes or structures by the particles. In the proposed model, the regularization mechanism makes each particle to have a different behavior according to the network structure. Consequently, communities with different sizes or structures can be correctly detected by the particles. Computer simulations show promising results of the proposed model. Moreover, the regularization mechanism improves both the accuracy and computational speed of the method as fewer iterations are required until convergence when compared to previous Particle Competition methods |
id |
USP_ea34c7d7434b69410539d2df8fcdb20c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20082020-101929 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex NetworksCompetição de Partícula de Dois Passos para Detecção de Comunidades Desbalanceadas em Redes ComplexasCommunity detectionCompetição de partículaComplex networksComunidades desbalanceadasDetecção de comunidadeParticle competitionRede complexaUnbalanced communityThe usage of Complex Networks has proved to be an excellent tool in reveling prevalent information from complex systems due to its ability to describe spatial, functional, and topological relations among the data. One inherent characteristic of Complex Networks, which is an excellent source of information, is its community structurecommonly defined as a set of nodes more densely connected than to other nodes of the networks. In order to extract this information, many techniques have been proposed. One interesting technique is the Particle Competition method, which is a bio-inspired approach in which a set of particles are inserted into the network and must compete with themselves to capture as many nodes as possible. Competition, here represented as a stochastic dynamic system that controls the particles, is a behavior widely encountered in nature when there is a shortage of resources, such as water, food, or matesthe nodes of the graph are the limited resources each particle must conquer. However, unbalanced communities commonly appear in real complex networks. Although many community detection techniques have been developed, and some of them possess a certain degree of tolerance to unbalance, there is still lacking an explicit and efficient mechanism to treat this problem. In this document, we proposed a Two-Stage Particle Competition model to detect unbalanced communities. At the first stage, named Competition, the particles compete with themselves to occupy as many nodes as possible. At the second stage, a diffusion-like regularization mechanism is introduced to determine the dominance level of each particle at a neighborhood of each node. The two stages work alternatively until the regularization process converges. In the original Particle Competition model, all particles have the same behavior; therefore, there is no way to correctly occupy the communities with different sizes or structures by the particles. In the proposed model, the regularization mechanism makes each particle to have a different behavior according to the network structure. Consequently, communities with different sizes or structures can be correctly detected by the particles. Computer simulations show promising results of the proposed model. Moreover, the regularization mechanism improves both the accuracy and computational speed of the method as fewer iterations are required until convergence when compared to previous Particle Competition methodsO uso de redes complexas provou ser uma excelente ferramenta para revelar informações de sistemas complexos devido à sua capacidade de descrever relações espaciais, funcionais e topológicas entre os dados. Uma característica inerente às redes complexas, que é uma excelente fonte de informações, é sua estrutura de comunidadegeralmente definida como um conjunto de nós mais densamente conectados entre si do que com outros nós da rede. Para extrair essa informação, diversas técnicas foram propostas. Uma técnica interessante é a Competição de Partícula, que é uma abordagem inpirada de fenômenos da natureza na qual um conjunto de partículas é inserido na rede e deve competir entre si para capturar o maior número possível de nós. A competição, aqui representada como um sistema dinâmico estocástico que controla as partículas, é um comportamento amplamente encontrado na natureza quando há escassez de recursos, como água, alimentos ou parceirosos vértices do grafo são esses recursos escassos. No entanto, comunidades desbalanceadas são frequentes em redes complexas reais. Embora muitas técnicas de detecção da comunidade tenham sido desenvolvidas e algumas delas possuam um certo grau de tolerância ao diferentes tamanhos de comunidade, ainda falta um mecanismo explícito e eficiente para tratar esse problema. Neste documento, propomos um modelo de Competição de Partículas em Dois Passos para detectar comunidades desbalanceadas. No primeiro estágio, chamado Competição, as partículas competem entre si para ocupar o maior número possível de nós. No segundo estágio, um mecanismo de regularização do tipo difusão é introduzido para determinar o nível de dominância de cada partícula, baseado no grau de dominância da vizinhança de cada nó. As duas etapas executam alternativamente até o processo de regularização convergir. No modelo original da Competição de Partículas, todas as partículas têm o mesmo comportamento; portanto, não há como cada partícula ocupar corretamente as comunidades com diferentes tamanhos ou estruturas. No modelo proposto, o mecanismo de regularização faz com que cada partícula tenha um comportamento diferente de acordo com a estrutura da rede. Consequentemente, comunidades com diferentes tamanhos ou estruturas podem ser corretamente detectadas pelas partículas. Simulações de computador mostram resultados promissores do modelo proposto. Além disso, o mecanismo de regularização melhora a precisão e a velocidade computacional do método, pois menos iterações são necessárias até a convergência, quando comparado aos métodos anteriores de Competição de Partículas.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoMartins, Luan Vinicius de Carvalho2020-08-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-20T16:31:02Zoai:teses.usp.br:tde-20082020-101929Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-20T16:31:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks Competição de Partícula de Dois Passos para Detecção de Comunidades Desbalanceadas em Redes Complexas |
title |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks |
spellingShingle |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks Martins, Luan Vinicius de Carvalho Community detection Competição de partícula Complex networks Comunidades desbalanceadas Detecção de comunidade Particle competition Rede complexa Unbalanced community |
title_short |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks |
title_full |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks |
title_fullStr |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks |
title_full_unstemmed |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks |
title_sort |
A Two-Stage Particle Competition Model for Unbalanced Community Detection in Complex Networks |
author |
Martins, Luan Vinicius de Carvalho |
author_facet |
Martins, Luan Vinicius de Carvalho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Liang, Zhao |
dc.contributor.author.fl_str_mv |
Martins, Luan Vinicius de Carvalho |
dc.subject.por.fl_str_mv |
Community detection Competição de partícula Complex networks Comunidades desbalanceadas Detecção de comunidade Particle competition Rede complexa Unbalanced community |
topic |
Community detection Competição de partícula Complex networks Comunidades desbalanceadas Detecção de comunidade Particle competition Rede complexa Unbalanced community |
description |
The usage of Complex Networks has proved to be an excellent tool in reveling prevalent information from complex systems due to its ability to describe spatial, functional, and topological relations among the data. One inherent characteristic of Complex Networks, which is an excellent source of information, is its community structurecommonly defined as a set of nodes more densely connected than to other nodes of the networks. In order to extract this information, many techniques have been proposed. One interesting technique is the Particle Competition method, which is a bio-inspired approach in which a set of particles are inserted into the network and must compete with themselves to capture as many nodes as possible. Competition, here represented as a stochastic dynamic system that controls the particles, is a behavior widely encountered in nature when there is a shortage of resources, such as water, food, or matesthe nodes of the graph are the limited resources each particle must conquer. However, unbalanced communities commonly appear in real complex networks. Although many community detection techniques have been developed, and some of them possess a certain degree of tolerance to unbalance, there is still lacking an explicit and efficient mechanism to treat this problem. In this document, we proposed a Two-Stage Particle Competition model to detect unbalanced communities. At the first stage, named Competition, the particles compete with themselves to occupy as many nodes as possible. At the second stage, a diffusion-like regularization mechanism is introduced to determine the dominance level of each particle at a neighborhood of each node. The two stages work alternatively until the regularization process converges. In the original Particle Competition model, all particles have the same behavior; therefore, there is no way to correctly occupy the communities with different sizes or structures by the particles. In the proposed model, the regularization mechanism makes each particle to have a different behavior according to the network structure. Consequently, communities with different sizes or structures can be correctly detected by the particles. Computer simulations show promising results of the proposed model. Moreover, the regularization mechanism improves both the accuracy and computational speed of the method as fewer iterations are required until convergence when compared to previous Particle Competition methods |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082020-101929/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257179186266112 |