Propriedades de recuperação de memória em redes neurais atratoras.

Detalhes bibliográficos
Autor(a) principal: Rodrigues Neto, Camilo
Data de Publicação: 1997
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-31102008-173551/
Resumo: Redes neurais atratoras são redes de neurônios artificiais com realimentacão e sem estrutura de conexão pré-definida. Estes tipos de redes apresentam uma rica dinâmica dissipativa e são freqüentemente utilizadas como memórias associativas. Tais dispositivos tem a propriedade de recuperar uma memória previamente armazenada, mesmo quando expostos a informação parcial ou degradada daquela memória. Armazenar uma memória significa criar um atrator para ela na dinâmica da rede e isto e feito especificando-se adequadamente os pesos sinápticos. Nesta tese, nos concentramos basicamente em duas maneiras de se definir os pesos sinapticos, que dão origem ao modelo da pseudo-inversa e ao modelo dos pesos ótimos. Para redes neurais extremamente diluídas, onde a conectividade C e o número de neurônios N satisfazem à condição C&#171 In N obtivemos os diagramas de fase no espaço completo de parâmetros dos modelos da pseudo-inversa e dos pesos ótimos através da analise da dinâmica da correlação de recuperação dos padrões armazenados. Alem disso, investigamos as propriedades de recuperação de redes neurais completamente conectadas através de duas abordagens: a investigação analítica da vizinhança dos padrões armazenados e a enumeração exaustiva dos atratores por meio de simulações numéricas. Finalmente. estudamos analiticamente o problema da categorizarão no modelo da pseudo-inversa. A categorizar;ao em redes neurais atratoras e a capacidade da rede treinada com exemplos de um conceito desenvolver um atrator para este conceito.
id USP_eb0bb86411c8b0b11ed679bc9c19c49a
oai_identifier_str oai:teses.usp.br:tde-31102008-173551
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Propriedades de recuperação de memória em redes neurais atratoras.Recovery of memory properties of Neural Networks in attractors.Artificial neuronsAttractors Neural NetworksNeurônios artificiaisPropriedades de recuperação de memóriaRecovery of memoryRedes neurais atratorasRedes neurais atratoras são redes de neurônios artificiais com realimentacão e sem estrutura de conexão pré-definida. Estes tipos de redes apresentam uma rica dinâmica dissipativa e são freqüentemente utilizadas como memórias associativas. Tais dispositivos tem a propriedade de recuperar uma memória previamente armazenada, mesmo quando expostos a informação parcial ou degradada daquela memória. Armazenar uma memória significa criar um atrator para ela na dinâmica da rede e isto e feito especificando-se adequadamente os pesos sinápticos. Nesta tese, nos concentramos basicamente em duas maneiras de se definir os pesos sinapticos, que dão origem ao modelo da pseudo-inversa e ao modelo dos pesos ótimos. Para redes neurais extremamente diluídas, onde a conectividade C e o número de neurônios N satisfazem à condição C&#171 In N obtivemos os diagramas de fase no espaço completo de parâmetros dos modelos da pseudo-inversa e dos pesos ótimos através da analise da dinâmica da correlação de recuperação dos padrões armazenados. Alem disso, investigamos as propriedades de recuperação de redes neurais completamente conectadas através de duas abordagens: a investigação analítica da vizinhança dos padrões armazenados e a enumeração exaustiva dos atratores por meio de simulações numéricas. Finalmente. estudamos analiticamente o problema da categorizarão no modelo da pseudo-inversa. A categorizar;ao em redes neurais atratoras e a capacidade da rede treinada com exemplos de um conceito desenvolver um atrator para este conceito.Attractor neural networks are feedback neural networks with no pre-defined connection structure. These types of neural networks present a rich dissipative dynamics and, in general, are used as associative memory devices. Such devices have the capacity to retrieve a previously stored memory, even when exposed to partial or degraded information. To store a memory means to create an attractor for it in the network dynamics, and this is done by specifying the set of synaptic weighs. In this thesis, we concentrate on two classical ways of specifying the synaptics weighs: the pseudo-inverse and the optimal weighs models. For extremely diluted neural networks, for which the connectivity C and the number of neurons N satisfy the condition C &#171 In N, we obtain the phase diagrams in the complete space of the model parameters through the analytical study of the retrieval overlap dynamics. We also investigate the retrieval properties of fully connected neural networks using two approaches: the analytical study of the neighborhood of the stored patterns, and the exhaustive enumeration of the attractors via numerical simulations. Finally, we study analytically the problem of categorization in the pseudo-inverse model. Categorization in attractor neural networks is the capacity to create an attractor for a concept to which the network has had access only through a finite number of examples.Biblioteca Digitais de Teses e Dissertações da USPFontanari, Jose FernandoRodrigues Neto, Camilo1997-06-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-31102008-173551/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-31102008-173551Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Propriedades de recuperação de memória em redes neurais atratoras.
Recovery of memory properties of Neural Networks in attractors.
title Propriedades de recuperação de memória em redes neurais atratoras.
spellingShingle Propriedades de recuperação de memória em redes neurais atratoras.
Rodrigues Neto, Camilo
Artificial neurons
Attractors Neural Networks
Neurônios artificiais
Propriedades de recuperação de memória
Recovery of memory
Redes neurais atratoras
title_short Propriedades de recuperação de memória em redes neurais atratoras.
title_full Propriedades de recuperação de memória em redes neurais atratoras.
title_fullStr Propriedades de recuperação de memória em redes neurais atratoras.
title_full_unstemmed Propriedades de recuperação de memória em redes neurais atratoras.
title_sort Propriedades de recuperação de memória em redes neurais atratoras.
author Rodrigues Neto, Camilo
author_facet Rodrigues Neto, Camilo
author_role author
dc.contributor.none.fl_str_mv Fontanari, Jose Fernando
dc.contributor.author.fl_str_mv Rodrigues Neto, Camilo
dc.subject.por.fl_str_mv Artificial neurons
Attractors Neural Networks
Neurônios artificiais
Propriedades de recuperação de memória
Recovery of memory
Redes neurais atratoras
topic Artificial neurons
Attractors Neural Networks
Neurônios artificiais
Propriedades de recuperação de memória
Recovery of memory
Redes neurais atratoras
description Redes neurais atratoras são redes de neurônios artificiais com realimentacão e sem estrutura de conexão pré-definida. Estes tipos de redes apresentam uma rica dinâmica dissipativa e são freqüentemente utilizadas como memórias associativas. Tais dispositivos tem a propriedade de recuperar uma memória previamente armazenada, mesmo quando expostos a informação parcial ou degradada daquela memória. Armazenar uma memória significa criar um atrator para ela na dinâmica da rede e isto e feito especificando-se adequadamente os pesos sinápticos. Nesta tese, nos concentramos basicamente em duas maneiras de se definir os pesos sinapticos, que dão origem ao modelo da pseudo-inversa e ao modelo dos pesos ótimos. Para redes neurais extremamente diluídas, onde a conectividade C e o número de neurônios N satisfazem à condição C&#171 In N obtivemos os diagramas de fase no espaço completo de parâmetros dos modelos da pseudo-inversa e dos pesos ótimos através da analise da dinâmica da correlação de recuperação dos padrões armazenados. Alem disso, investigamos as propriedades de recuperação de redes neurais completamente conectadas através de duas abordagens: a investigação analítica da vizinhança dos padrões armazenados e a enumeração exaustiva dos atratores por meio de simulações numéricas. Finalmente. estudamos analiticamente o problema da categorizarão no modelo da pseudo-inversa. A categorizar;ao em redes neurais atratoras e a capacidade da rede treinada com exemplos de um conceito desenvolver um atrator para este conceito.
publishDate 1997
dc.date.none.fl_str_mv 1997-06-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-31102008-173551/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-31102008-173551/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257518475051008