Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/91/91131/tde-14032019-160707/ |
Resumo: | The amazon ecosystems have been compromised by historical forms of occupation and land-use causing habitat loss and forest fragmentation. These anthropogenic disturbances associated to climate changes have direct consequences on the distribution of species and their in situ persistence. Currently, 76 of 14.003 plants taxonomically identified in the Amazon have been listed by the Brasilian Ministry of the Environment as threatened species, though we believe this number to be much bigger in the reality. Among them, Amazon-nut (Bertholletia excelsa), a native tree species, national and internationally known for its cultural, social-economic and nutritional value has been classified as vulnerable. For developping of public policy turned to its management and conservation is fundamental to know the percentage of habitat available, as well as the nature and scale of threats to this environments. Species distribution modelling is an increasingly important tool for predicting habitat suitability and for understanding species environmental tolerances, but has been rarely used in Brazil, especially for Amazonian species. This study aimed to model the potential distribution of B. excelsa in the Amazon biome and to know the factors that control its distribution. To enhance our analysis, case studies were carried out with stakeholders aiming to know their perceptions about the main threats to the species and potential solutions.This research project was based on two hypotheses: (i) There is a suitable habitat to Amazon-nut which require different objectives for conservation and planting; (ii) If the local people are aware of the species vulnerability, they are able to point out the factors that cause this condition. In the chapter 1, habitat was investigated using MAXENT algoritm. We collected 3,325 Amazon-nut records and organized one hundred-and-two environmental variables into climatic, edaphic and geophysical categories at a spatial resolution of 30 arcs-second (~1km). Multi-colinearity between variables was dealt with multivariate statistics associated to expert\'s knowledge, and presence data biased with the spatial filtering. The best model was selected adopting quantitative metrics and visual examination. The most importante biophysic variables we identified were: altitude (m), coarse soil fragments (<2mm) and clay (%). Finaly, the best model indicated 2.3 million km2 i.e., 32% of the Amazon basin has potential for B. excelsa to grow. In the chapter 2, the factors that affect Amazon-nut conservation and planting were discussed with local communities, public managers and researchers, totalyzing 203 participants. Focus groups, individual interviews and questionaire techniques were used to gather information. Data were categorized and the perceptions among stakeholders compared using quali-quantitative analyses. We found that there are currently 36 problems responsible for the species vulnerability and 72% of them belong to environmental and political contexts. Deforestation was the main problem mentioned, followed by fruit depreciation, control failures and lack of organization in the communities. For three groups of stakeholders, the main solutions were related to political context. The results obtained in this study contribute to increase ecological knowledge on the species, to demonstrate the complexity of sustainable use in the Amazon and to guide decisions makers in the selection of priority areas for conservation and potential planting. |
id |
USP_eb85eeb9241b718ba31cea9d382eb2e5 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14032019-160707 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservationCombinando a modelagem de distribuição de espécies e percepções ambientais para fundamentar estratégias sustentáveis de plantio e conservação da Castanha-da-Amazônia (Bertholletia excelsa Bonpl.)AmazôniaConservaçãoConservationEnvironmental perceptionEspécie ameaçadaHabitat suitabilityModelagem de habitatPercepção ambientalThreatened speciesThe amazon ecosystems have been compromised by historical forms of occupation and land-use causing habitat loss and forest fragmentation. These anthropogenic disturbances associated to climate changes have direct consequences on the distribution of species and their in situ persistence. Currently, 76 of 14.003 plants taxonomically identified in the Amazon have been listed by the Brasilian Ministry of the Environment as threatened species, though we believe this number to be much bigger in the reality. Among them, Amazon-nut (Bertholletia excelsa), a native tree species, national and internationally known for its cultural, social-economic and nutritional value has been classified as vulnerable. For developping of public policy turned to its management and conservation is fundamental to know the percentage of habitat available, as well as the nature and scale of threats to this environments. Species distribution modelling is an increasingly important tool for predicting habitat suitability and for understanding species environmental tolerances, but has been rarely used in Brazil, especially for Amazonian species. This study aimed to model the potential distribution of B. excelsa in the Amazon biome and to know the factors that control its distribution. To enhance our analysis, case studies were carried out with stakeholders aiming to know their perceptions about the main threats to the species and potential solutions.This research project was based on two hypotheses: (i) There is a suitable habitat to Amazon-nut which require different objectives for conservation and planting; (ii) If the local people are aware of the species vulnerability, they are able to point out the factors that cause this condition. In the chapter 1, habitat was investigated using MAXENT algoritm. We collected 3,325 Amazon-nut records and organized one hundred-and-two environmental variables into climatic, edaphic and geophysical categories at a spatial resolution of 30 arcs-second (~1km). Multi-colinearity between variables was dealt with multivariate statistics associated to expert\'s knowledge, and presence data biased with the spatial filtering. The best model was selected adopting quantitative metrics and visual examination. The most importante biophysic variables we identified were: altitude (m), coarse soil fragments (<2mm) and clay (%). Finaly, the best model indicated 2.3 million km2 i.e., 32% of the Amazon basin has potential for B. excelsa to grow. In the chapter 2, the factors that affect Amazon-nut conservation and planting were discussed with local communities, public managers and researchers, totalyzing 203 participants. Focus groups, individual interviews and questionaire techniques were used to gather information. Data were categorized and the perceptions among stakeholders compared using quali-quantitative analyses. We found that there are currently 36 problems responsible for the species vulnerability and 72% of them belong to environmental and political contexts. Deforestation was the main problem mentioned, followed by fruit depreciation, control failures and lack of organization in the communities. For three groups of stakeholders, the main solutions were related to political context. The results obtained in this study contribute to increase ecological knowledge on the species, to demonstrate the complexity of sustainable use in the Amazon and to guide decisions makers in the selection of priority areas for conservation and potential planting.Os ecossistemas amazônicos vêm sendo impactados ao longo dos anos por diversos processos de uso e ocupação do território, os quais têm resultado em perdas de habitats e na fragmentação da paisagem nativa. Essas perturbações antrópicas, associadas às mudanças climáticas, têm consequências diretas sobre a distribuição e persistência das espécies in situ. Das 14.003 plantas da Amazônia reconhecidas taxonomicamente, somente 76 estão atualmente listadas pelo Ministério do Meio Ambiente brasileiro como espécies ameaçadas, embora acredita-se que esse número seja muito maior. Entre elas, a Castanha-da-Amazônia (Bertholletia excelsa), uma espécie de árvore nativa, reconhecida nacional e internacionalmente pela sua importância cultural, socioeconômica e nutricional, encontra-se classificada como vulnerável. Para nortear políticas públicas na conservação e no plantio dessa espécie, um profundo entendimento sobre o habitat disponível para ela, bem como a origem e escala das ameaças à esse ambiente, é necessário. A modelagem de distribuição de espécies é uma ferramenta que oferece predições espaciais robustas sobre a adequabilidade de habitat e tolerância das espécies, mas tem sido pouco utilizada no Brasil, sobretudo para espécies Amazônicas. Nesse contexto, esse estudo objetivou modelar a distribuição potencial da B. excelsa no bioma Amazônia, bem como conhecer os fatores que controlam sua distribuição. Para aprofundar essas análises, estudos de caso foram realizados com o objetivo de conhecer a percepção de atores sociais envolvidos com a espécie sobre as principais ameaças e potenciais soluções. Essa tese baseou-se em duas hipóteses: (i) existem áreas com maior adequabilidade para a ocorrência da Castanha-da-Amazônia que demandam diferentes objetivos, para conservação e para o plantio; (ii) se a população local é conciente da vulnerabilidade da espécie, ela pode indicar os fatores que geram essa condição. No capítulo 1, o habitat foi investigado por meio de simulações usando o algoritmo MAXENT. Um total de 3.325 ocorrências e 102 variáveis ambientais foram obtidas, e posteriormente organizadas por categorias climática, edáfica e geofísica. A resolução espacial escolhida foi de 30 arc-segundo (~1km). A multi-colinearidade entre as variáveis foi reduzida por meio da estatística multivariada associada ao conhecimento de especialistas, e as tendências nas ocorrência foram tratadas através da filtragem espacial. O melhor modelo foi selecionado usando métricas quantitativas e examinações visuais. As variáveis biofísicas mais importantes encontradas foram altitude (m), solos com fragmentos grosseiros (<2mm) e argila (%). Por fim, o modelo indicou que 2.3 million km2 i.e., 32% da região amazônica é apropriado para B. excelsa crescer. No capítulo 2, os fatores que afetam a conservação e o plantio da espécie foram discutidos com comunidades, gestores e pesquisadores locais, totalizando 203 participantes. As técnicas de discussão em grupo focal, entrevistas individuais e questionários foram utilizadas para a coleta das informações. Os dados foram categorizados e as opiniões entre os diferentes grupos comparadas utilizando análises quali-quantitativas. Concluiu-se que atualmente existem 36 problemas responsáveis pela vulnerabilidade da espécie, dos quais 72% encontram-se no contexto ambiental e político. O desmatamento foi a principal forçante apontada, seguida pela desvalorização do fruto, falhas na fiscalização e falta de organização nas comunidades. Para os três grupos, as principais soluções foram voltadas para o contexto político. Os resultados obtidos nesse estudo contribuiem para aumentar o conhecimento ecológico da espécie, para demostrar a complexidade do uso sustentável na Amazônia, e orientar tomadores de decisão na seleção de áreas prioritárias para conservação e potenciais para o plantio.Biblioteca Digitais de Teses e Dissertações da USPBallester, Maria Victoria RamosTourne, Daiana Carolina Monteiro2018-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/91/91131/tde-14032019-160707/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-09T23:21:59Zoai:teses.usp.br:tde-14032019-160707Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation Combinando a modelagem de distribuição de espécies e percepções ambientais para fundamentar estratégias sustentáveis de plantio e conservação da Castanha-da-Amazônia (Bertholletia excelsa Bonpl.) |
title |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation |
spellingShingle |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation Tourne, Daiana Carolina Monteiro Amazônia Conservação Conservation Environmental perception Espécie ameaçada Habitat suitability Modelagem de habitat Percepção ambiental Threatened species |
title_short |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation |
title_full |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation |
title_fullStr |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation |
title_full_unstemmed |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation |
title_sort |
Combining species distribution modelling and environmental perceptions to support sustainable strategies for Amazon-nut (Bertholletia excelsa Bonpl.) planting and conservation |
author |
Tourne, Daiana Carolina Monteiro |
author_facet |
Tourne, Daiana Carolina Monteiro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ballester, Maria Victoria Ramos |
dc.contributor.author.fl_str_mv |
Tourne, Daiana Carolina Monteiro |
dc.subject.por.fl_str_mv |
Amazônia Conservação Conservation Environmental perception Espécie ameaçada Habitat suitability Modelagem de habitat Percepção ambiental Threatened species |
topic |
Amazônia Conservação Conservation Environmental perception Espécie ameaçada Habitat suitability Modelagem de habitat Percepção ambiental Threatened species |
description |
The amazon ecosystems have been compromised by historical forms of occupation and land-use causing habitat loss and forest fragmentation. These anthropogenic disturbances associated to climate changes have direct consequences on the distribution of species and their in situ persistence. Currently, 76 of 14.003 plants taxonomically identified in the Amazon have been listed by the Brasilian Ministry of the Environment as threatened species, though we believe this number to be much bigger in the reality. Among them, Amazon-nut (Bertholletia excelsa), a native tree species, national and internationally known for its cultural, social-economic and nutritional value has been classified as vulnerable. For developping of public policy turned to its management and conservation is fundamental to know the percentage of habitat available, as well as the nature and scale of threats to this environments. Species distribution modelling is an increasingly important tool for predicting habitat suitability and for understanding species environmental tolerances, but has been rarely used in Brazil, especially for Amazonian species. This study aimed to model the potential distribution of B. excelsa in the Amazon biome and to know the factors that control its distribution. To enhance our analysis, case studies were carried out with stakeholders aiming to know their perceptions about the main threats to the species and potential solutions.This research project was based on two hypotheses: (i) There is a suitable habitat to Amazon-nut which require different objectives for conservation and planting; (ii) If the local people are aware of the species vulnerability, they are able to point out the factors that cause this condition. In the chapter 1, habitat was investigated using MAXENT algoritm. We collected 3,325 Amazon-nut records and organized one hundred-and-two environmental variables into climatic, edaphic and geophysical categories at a spatial resolution of 30 arcs-second (~1km). Multi-colinearity between variables was dealt with multivariate statistics associated to expert\'s knowledge, and presence data biased with the spatial filtering. The best model was selected adopting quantitative metrics and visual examination. The most importante biophysic variables we identified were: altitude (m), coarse soil fragments (<2mm) and clay (%). Finaly, the best model indicated 2.3 million km2 i.e., 32% of the Amazon basin has potential for B. excelsa to grow. In the chapter 2, the factors that affect Amazon-nut conservation and planting were discussed with local communities, public managers and researchers, totalyzing 203 participants. Focus groups, individual interviews and questionaire techniques were used to gather information. Data were categorized and the perceptions among stakeholders compared using quali-quantitative analyses. We found that there are currently 36 problems responsible for the species vulnerability and 72% of them belong to environmental and political contexts. Deforestation was the main problem mentioned, followed by fruit depreciation, control failures and lack of organization in the communities. For three groups of stakeholders, the main solutions were related to political context. The results obtained in this study contribute to increase ecological knowledge on the species, to demonstrate the complexity of sustainable use in the Amazon and to guide decisions makers in the selection of priority areas for conservation and potential planting. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/91/91131/tde-14032019-160707/ |
url |
http://www.teses.usp.br/teses/disponiveis/91/91131/tde-14032019-160707/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090705592680448 |