Environment reconstruction on disparity images using surface features and Generative Adversarial Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-163017/ |
Resumo: | The study and development of autonomous vehicles have become more relevant at each day. For the intelligent vehicle to be able to navigate through a real urban environment it is necessary a high degree of reliability to ensure the passenger and pedestrians safety. Therefore, sensors and algorithms used to help the decision making during the autonomous navigation need the maximum amount of information available, for the environment analysis to be most complete as possible. As an human driver, the computer should analyze the surrounding environment and evaluate the possible actions to execute in order to reach the final destination safely. However, despite the high precision data collected by the sensors, computational methods has a disadvantage when compared to the human cognition. A human driver can analyze the surrounding environment and deduce occluded information, more specifically information related to the environment behind objects and structures. For computational methods extract this missing data is a challenge. Recent works on image processing propose methods to estimate the area behind specified regions. Yet, those methods are applied on RGB images, where the focus is a visually satisfactory result. When dealing with disparity images, which codify depth data, it is necessary a coherent and precise estimation, since any noise on the image will be intensified in the tridimensional reconstruction, and will influence on the decision making algorithms environment interpretation. In this work we deal with the hypothesis of, by using specific disparity and depth features as guideline for the disparity image estimation, it is possible to achieve a coherent environment reconstruction of the area behind a masked region. Our results point out to this hypothesis validation, since we achieve - at the end of this work - a continuous environment reconstruction without significant noise. |
id |
USP_efc231f9c77aeebff5a8b22f138258bb |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27072020-163017 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Environment reconstruction on disparity images using surface features and Generative Adversarial NetworksReconstrução do ambiente em imagens de disparidade utilizando informações das superfícies e Redes Adversariais GenerativasDepth estimationDisparity imagesEstimação de profundidadeGANGANImage inpaintingImagens de disparidadeObject removalReconstrução de imagensRemoção de objetosThe study and development of autonomous vehicles have become more relevant at each day. For the intelligent vehicle to be able to navigate through a real urban environment it is necessary a high degree of reliability to ensure the passenger and pedestrians safety. Therefore, sensors and algorithms used to help the decision making during the autonomous navigation need the maximum amount of information available, for the environment analysis to be most complete as possible. As an human driver, the computer should analyze the surrounding environment and evaluate the possible actions to execute in order to reach the final destination safely. However, despite the high precision data collected by the sensors, computational methods has a disadvantage when compared to the human cognition. A human driver can analyze the surrounding environment and deduce occluded information, more specifically information related to the environment behind objects and structures. For computational methods extract this missing data is a challenge. Recent works on image processing propose methods to estimate the area behind specified regions. Yet, those methods are applied on RGB images, where the focus is a visually satisfactory result. When dealing with disparity images, which codify depth data, it is necessary a coherent and precise estimation, since any noise on the image will be intensified in the tridimensional reconstruction, and will influence on the decision making algorithms environment interpretation. In this work we deal with the hypothesis of, by using specific disparity and depth features as guideline for the disparity image estimation, it is possible to achieve a coherent environment reconstruction of the area behind a masked region. Our results point out to this hypothesis validation, since we achieve - at the end of this work - a continuous environment reconstruction without significant noise.O estudo e desenvolvimento de veículos autônomos vem se tornando cada vez mais relevante. Para que estes veículos possam trafegar em um ambiente urbano real é necessário alto grau de confiabilidade para garantir a segurança dos passageiros e dos pedestres. Para isso, os sensores e algoritmos utilizados para auxiliar na tomada de decisão durante a direção autônoma necessitam do máximo de informação disponível, para que a análise do ambiente seja o mais ampla possível. Assim como um motorista humano, o computador deve analisar o ambiente ao seu redor e avaliar as possíveis medidas a serem tomadas afim de alcançar o destino final do trajeto de modo seguro. Contudo, apesar dos sensores coletarem informações com alta precisão, métodos computacionais possuem uma desvantagem em relação à cognição humana. Um motorista humano pode analisar as informações do ambiente ao seu redor e deduzir informações oclusas, mais especificamente informações sobre o ambiente por de trás de diferentes objetos e estruturas. Para métodos computacionais, extrair esta informação omissa é um desafio. Trabalhos recentes na área de processamento de imagens propõe métodos para estimar a área por trás de regiões especificadas. Porém, estes métodos são aplicados a imagens RGB, onde o foco é um resultado visualmente satisfatório. Ao lidarmos com imagens de disparidade, que codificam dados de profundidade, é necessária uma estimativa coerente e precisa, uma vez que quaisquer ruídos na imagem, serão intensificados na reconstrução tridimensional e influenciarão na interpretação do ambiente ao redor pelos algoritmos de tomada de decisão. Neste trabalho lidamos com a hipótese de que, utilizando aspectos específicos dos dados de disparidade e profundidade como orientação para a estimativa de disparidade, é possível alcançar uma reconstrução coerente do ambiente por de trás de uma região demarcada. Os resultados apontam para a validação dessa hipótese, uma vez que alcançamos - ao fim deste trabalho - uma reconstrução contínua do ambiente com poucos ruídos.Biblioteca Digitais de Teses e Dissertações da USPWolf, Denis FernandoMatias, Lucas Peres Nunes2020-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-163017/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-13T00:47:50Zoai:teses.usp.br:tde-27072020-163017Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-13T00:47:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks Reconstrução do ambiente em imagens de disparidade utilizando informações das superfícies e Redes Adversariais Generativas |
title |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks |
spellingShingle |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks Matias, Lucas Peres Nunes Depth estimation Disparity images Estimação de profundidade GAN GAN Image inpainting Imagens de disparidade Object removal Reconstrução de imagens Remoção de objetos |
title_short |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks |
title_full |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks |
title_fullStr |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks |
title_full_unstemmed |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks |
title_sort |
Environment reconstruction on disparity images using surface features and Generative Adversarial Networks |
author |
Matias, Lucas Peres Nunes |
author_facet |
Matias, Lucas Peres Nunes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Wolf, Denis Fernando |
dc.contributor.author.fl_str_mv |
Matias, Lucas Peres Nunes |
dc.subject.por.fl_str_mv |
Depth estimation Disparity images Estimação de profundidade GAN GAN Image inpainting Imagens de disparidade Object removal Reconstrução de imagens Remoção de objetos |
topic |
Depth estimation Disparity images Estimação de profundidade GAN GAN Image inpainting Imagens de disparidade Object removal Reconstrução de imagens Remoção de objetos |
description |
The study and development of autonomous vehicles have become more relevant at each day. For the intelligent vehicle to be able to navigate through a real urban environment it is necessary a high degree of reliability to ensure the passenger and pedestrians safety. Therefore, sensors and algorithms used to help the decision making during the autonomous navigation need the maximum amount of information available, for the environment analysis to be most complete as possible. As an human driver, the computer should analyze the surrounding environment and evaluate the possible actions to execute in order to reach the final destination safely. However, despite the high precision data collected by the sensors, computational methods has a disadvantage when compared to the human cognition. A human driver can analyze the surrounding environment and deduce occluded information, more specifically information related to the environment behind objects and structures. For computational methods extract this missing data is a challenge. Recent works on image processing propose methods to estimate the area behind specified regions. Yet, those methods are applied on RGB images, where the focus is a visually satisfactory result. When dealing with disparity images, which codify depth data, it is necessary a coherent and precise estimation, since any noise on the image will be intensified in the tridimensional reconstruction, and will influence on the decision making algorithms environment interpretation. In this work we deal with the hypothesis of, by using specific disparity and depth features as guideline for the disparity image estimation, it is possible to achieve a coherent environment reconstruction of the area behind a masked region. Our results point out to this hypothesis validation, since we achieve - at the end of this work - a continuous environment reconstruction without significant noise. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-163017/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27072020-163017/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257414833799168 |