Modelos lineares generalizados mistos com aplicações em atuária
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-122527/ |
Resumo: | Em estudos multiovariadosa é comum a mesma unidade experimental ser medida várias vezes, seja variando as condições do experimento (medidas repetidas) ou quando é feito um acompanhamento ao longo do tempo (dados longitudinais). Na análise destas estruturas de dados, modelos de regresão clássicos não podem ser utilizados, pois a pressuposição básica de independência entre as observações não pode ser assumida. Uma forma de trabalhar a corelação entre as observações é aplicar o enfoque dos chamados modelos marginais, cujo principal exemplo desta linha de metodologias são as Equações de Estimação Generalizadas (EEGs), desenvolvidas e discutidas por Liang e Zeger. Um outro enfoque são os chamados modelos condicionais, nesta metodologia a inclusão de efeitos aleatórios permite que as observações condicionadas a estes efeitos sejam independentes. Uma parte dos modelos condicionais já foi amplamente estudada no caso do vetor de respostas condicionado seguir uma distribuição normal, esses modelos são conhecidos como Modelos Lineares Mistos (MLMs). Nessa dissertação de mestrado será apresentada a teoria dos Modelos Lineares Generalizados Mistos (MLGMs), que tem como objetivo estender as opções de distribuições do vetor de respostas condicionado para que este pertença à família exponencial de distribuições. Esta classe mais ampla engloba a distribuição normal como caso particular. Embora os MLGMs sejam definidos segundo uma estrutura condicional, a obtenção das estimativas de máxima verossimilhança é feita através de procedimentos marginais, alguns dos quais são discutidos com mais detalhes |
id |
USP_f0a622882aefdd5c9d1757f7797d97cf |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20220712-122527 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos lineares generalizados mistos com aplicações em atuárianot availablePesquisa E Planejamento EstatísticoEm estudos multiovariadosa é comum a mesma unidade experimental ser medida várias vezes, seja variando as condições do experimento (medidas repetidas) ou quando é feito um acompanhamento ao longo do tempo (dados longitudinais). Na análise destas estruturas de dados, modelos de regresão clássicos não podem ser utilizados, pois a pressuposição básica de independência entre as observações não pode ser assumida. Uma forma de trabalhar a corelação entre as observações é aplicar o enfoque dos chamados modelos marginais, cujo principal exemplo desta linha de metodologias são as Equações de Estimação Generalizadas (EEGs), desenvolvidas e discutidas por Liang e Zeger. Um outro enfoque são os chamados modelos condicionais, nesta metodologia a inclusão de efeitos aleatórios permite que as observações condicionadas a estes efeitos sejam independentes. Uma parte dos modelos condicionais já foi amplamente estudada no caso do vetor de respostas condicionado seguir uma distribuição normal, esses modelos são conhecidos como Modelos Lineares Mistos (MLMs). Nessa dissertação de mestrado será apresentada a teoria dos Modelos Lineares Generalizados Mistos (MLGMs), que tem como objetivo estender as opções de distribuições do vetor de respostas condicionado para que este pertença à família exponencial de distribuições. Esta classe mais ampla engloba a distribuição normal como caso particular. Embora os MLGMs sejam definidos segundo uma estrutura condicional, a obtenção das estimativas de máxima verossimilhança é feita através de procedimentos marginais, alguns dos quais são discutidos com mais detalhesnot availableBiblioteca Digitais de Teses e Dissertações da USPPaula, Gilberto AlvarengaBaptistelli, Juliana Carpini2008-05-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-122527/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T15:18:02Zoai:teses.usp.br:tde-20220712-122527Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T15:18:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos lineares generalizados mistos com aplicações em atuária not available |
title |
Modelos lineares generalizados mistos com aplicações em atuária |
spellingShingle |
Modelos lineares generalizados mistos com aplicações em atuária Baptistelli, Juliana Carpini Pesquisa E Planejamento Estatístico |
title_short |
Modelos lineares generalizados mistos com aplicações em atuária |
title_full |
Modelos lineares generalizados mistos com aplicações em atuária |
title_fullStr |
Modelos lineares generalizados mistos com aplicações em atuária |
title_full_unstemmed |
Modelos lineares generalizados mistos com aplicações em atuária |
title_sort |
Modelos lineares generalizados mistos com aplicações em atuária |
author |
Baptistelli, Juliana Carpini |
author_facet |
Baptistelli, Juliana Carpini |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paula, Gilberto Alvarenga |
dc.contributor.author.fl_str_mv |
Baptistelli, Juliana Carpini |
dc.subject.por.fl_str_mv |
Pesquisa E Planejamento Estatístico |
topic |
Pesquisa E Planejamento Estatístico |
description |
Em estudos multiovariadosa é comum a mesma unidade experimental ser medida várias vezes, seja variando as condições do experimento (medidas repetidas) ou quando é feito um acompanhamento ao longo do tempo (dados longitudinais). Na análise destas estruturas de dados, modelos de regresão clássicos não podem ser utilizados, pois a pressuposição básica de independência entre as observações não pode ser assumida. Uma forma de trabalhar a corelação entre as observações é aplicar o enfoque dos chamados modelos marginais, cujo principal exemplo desta linha de metodologias são as Equações de Estimação Generalizadas (EEGs), desenvolvidas e discutidas por Liang e Zeger. Um outro enfoque são os chamados modelos condicionais, nesta metodologia a inclusão de efeitos aleatórios permite que as observações condicionadas a estes efeitos sejam independentes. Uma parte dos modelos condicionais já foi amplamente estudada no caso do vetor de respostas condicionado seguir uma distribuição normal, esses modelos são conhecidos como Modelos Lineares Mistos (MLMs). Nessa dissertação de mestrado será apresentada a teoria dos Modelos Lineares Generalizados Mistos (MLGMs), que tem como objetivo estender as opções de distribuições do vetor de respostas condicionado para que este pertença à família exponencial de distribuições. Esta classe mais ampla engloba a distribuição normal como caso particular. Embora os MLGMs sejam definidos segundo uma estrutura condicional, a obtenção das estimativas de máxima verossimilhança é feita através de procedimentos marginais, alguns dos quais são discutidos com mais detalhes |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-05-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-122527/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-122527/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257216989528064 |