Análise de séries temporais aeroelásticas experimentais não lineares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/18/18148/tde-12062008-113731/ |
Resumo: | A análise de sistemas dinâmicos não lineares pode ser baseada em séries obtidas de modelos matemáticos ou de experimentos. Modelos matemáticos para respostas aeroelásticas associadas ao estol dinâmico são muito difíceis de obter. Neste caso, experimentos e ensaios em vôo parecem fornecer uma base mais apropriada para a análise da dinâmica não linear. Técnicas de sistemas dinâmicos baseadas em análise de séries temporais podem ser aplicadas para a aeroelasticidade não linear. Quando tem-se disponível apenas séries experimentais, as técnicas de reconstrução do espaço de estados têm sido extensivamente utilizadas. Além disso, os expoentes de Lyapunov fornecem uma caracterização qualitativa e quantitativa do comportamento caótico de sistemas não lineares, assim, um expoente de Lyapunov positivo é um forte indicativo de caos. Medidas de entropia também fornecem informações importantes da complexidade do sistema não linear, consequentemente sua aplicação às séries temporais aeroelásticas representam uma forma apropriada para identificar movimentos caóticos. Este trabalho apresenta a aplicação de técnicas da análise de séries temporais, tais como, reconstrução do espaço de estados, expoentes de Lyapunov e medidas de entropia para respostas aeroelásticas não lineares para prever o comportamento caótico. Um modelo de asa flexível foi construído e testado em túnel de vento de circuito fechado com velocidade do escoamento variando entre 9,0 e 17,0 m/s. O modelo foi montado sobre uma plataforma giratória que produzia variações no ângulo de incidência. Deformações estruturais foram capturadas por meio de extensômetros que forneciam informações da resposta aeroelástica. O método da defasagem é utilizado para reconstruir o espaço de estados das séries temporais obtidas no experimento. Para obter a defasagem utilizada na reconstrução foi usada a análise da função de autocorrelação. Para determinar a dimensão do atrator é calculada a integral de correlação. A evolução do espectro de frequências e do espaço de estados reconstruído é analisada com as variações da velocidade do escoamento e da frequência de oscilação da plataforma. Os expoentes de Lyapunov e a entropia de Rényi foram obtidos para identificar o comportamento caótico. Os resultados foram analisados com a variação da velocidade do escoamento e da frequência de oscilação da plataforma. As técnicas utilizadas foram eficientes para observar o aparecimento de mudanças no sistema e do comportamento caótico com uma escala de interação fluido-estrutura complexa para movimentos com altos ângulos de incidência. |
id |
USP_f29ea1d2ed29309be1a915e994ec3303 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12062008-113731 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Análise de séries temporais aeroelásticas experimentais não linearesNonlinear experimental aeroelastic time series analysisAeroelasticidadeAeroelasticityCaosChaosEntropiaEntropyExpoentes de LyapunovLyapunov exponentsNonlinear systemsRecontrução do espaço de estadosSistemas não linearesSpace state reconstructionA análise de sistemas dinâmicos não lineares pode ser baseada em séries obtidas de modelos matemáticos ou de experimentos. Modelos matemáticos para respostas aeroelásticas associadas ao estol dinâmico são muito difíceis de obter. Neste caso, experimentos e ensaios em vôo parecem fornecer uma base mais apropriada para a análise da dinâmica não linear. Técnicas de sistemas dinâmicos baseadas em análise de séries temporais podem ser aplicadas para a aeroelasticidade não linear. Quando tem-se disponível apenas séries experimentais, as técnicas de reconstrução do espaço de estados têm sido extensivamente utilizadas. Além disso, os expoentes de Lyapunov fornecem uma caracterização qualitativa e quantitativa do comportamento caótico de sistemas não lineares, assim, um expoente de Lyapunov positivo é um forte indicativo de caos. Medidas de entropia também fornecem informações importantes da complexidade do sistema não linear, consequentemente sua aplicação às séries temporais aeroelásticas representam uma forma apropriada para identificar movimentos caóticos. Este trabalho apresenta a aplicação de técnicas da análise de séries temporais, tais como, reconstrução do espaço de estados, expoentes de Lyapunov e medidas de entropia para respostas aeroelásticas não lineares para prever o comportamento caótico. Um modelo de asa flexível foi construído e testado em túnel de vento de circuito fechado com velocidade do escoamento variando entre 9,0 e 17,0 m/s. O modelo foi montado sobre uma plataforma giratória que produzia variações no ângulo de incidência. Deformações estruturais foram capturadas por meio de extensômetros que forneciam informações da resposta aeroelástica. O método da defasagem é utilizado para reconstruir o espaço de estados das séries temporais obtidas no experimento. Para obter a defasagem utilizada na reconstrução foi usada a análise da função de autocorrelação. Para determinar a dimensão do atrator é calculada a integral de correlação. A evolução do espectro de frequências e do espaço de estados reconstruído é analisada com as variações da velocidade do escoamento e da frequência de oscilação da plataforma. Os expoentes de Lyapunov e a entropia de Rényi foram obtidos para identificar o comportamento caótico. Os resultados foram analisados com a variação da velocidade do escoamento e da frequência de oscilação da plataforma. As técnicas utilizadas foram eficientes para observar o aparecimento de mudanças no sistema e do comportamento caótico com uma escala de interação fluido-estrutura complexa para movimentos com altos ângulos de incidência.The analysis of non-linear dynamical systems can be based on data from either a mathematical model or an experiment. Mathematical models for aeroelastic response associated to the dynamic stall behavior are very hard to obtain. In this case, experimental or in flight data seems to provide suitable basis for non-linear dynamical analysis. Dynamic systems techniques based on time series analysis can be adequately applied to non-linear aeroelasticity. When experimental data are available, state space reconstruction methods have been widely considered. Moreover, the Lyapunov exponents provides qualitative and quantitative characterization of nonlinear systems chaotic behavior, since positive Lyapunov exponent is a strong signature of chaos. Entropy measures also provide important information on the complexity of nonlinear system, therefore its application to aeroelastic time series represent a proper way to seek for chaotic motions. This work presents the application techniques from time series analysis, such as, state space reconstruction, Lyapunov exponents and entropy measures to nonlinear aeroelastic responses, in order to predict chaotic behavior. A flexible wing model has been constructed and tested in a closed circuit wind tunnel with freestream between 9,0 and 17,0 m/s. The wing model has been mounted on a turntable that allows variations to the wing incidence angle. Structural deformation is captured by means of strain gages, thereby providing information on the aeroelastic response. The method of delays has been used to identify an embedded attractor in the state space from experimentally acquired aeroelastic response time series. To obtain the time delay value to manipulate the time series during reconstruction, the autocorrelation function analysis has been used. For the attractor embeeding dimension calculation the correlation integral approach has been considered. The evolution of frequency spectra and the reconstrueted state space is analyzed for variations of the freestream and the frequency of oscilIation of the turntable. Lyapunov exponents and Rényi entropy have been achieved in order to seek for chaotic behavior. The results were analyzed with the variation of the freestream and the frequency of oscillation of the turntable. The used techniques had been efficient to observe the occurence of changes and chaotic behavior withim a range of complex fluid-structure interaction at higher angle of incidence motions.Biblioteca Digitais de Teses e Dissertações da USPMarques, Flavio DonizetiSimoni, Andreia Raquel2008-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18148/tde-12062008-113731/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-12062008-113731Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Análise de séries temporais aeroelásticas experimentais não lineares Nonlinear experimental aeroelastic time series analysis |
title |
Análise de séries temporais aeroelásticas experimentais não lineares |
spellingShingle |
Análise de séries temporais aeroelásticas experimentais não lineares Simoni, Andreia Raquel Aeroelasticidade Aeroelasticity Caos Chaos Entropia Entropy Expoentes de Lyapunov Lyapunov exponents Nonlinear systems Recontrução do espaço de estados Sistemas não lineares Space state reconstruction |
title_short |
Análise de séries temporais aeroelásticas experimentais não lineares |
title_full |
Análise de séries temporais aeroelásticas experimentais não lineares |
title_fullStr |
Análise de séries temporais aeroelásticas experimentais não lineares |
title_full_unstemmed |
Análise de séries temporais aeroelásticas experimentais não lineares |
title_sort |
Análise de séries temporais aeroelásticas experimentais não lineares |
author |
Simoni, Andreia Raquel |
author_facet |
Simoni, Andreia Raquel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marques, Flavio Donizeti |
dc.contributor.author.fl_str_mv |
Simoni, Andreia Raquel |
dc.subject.por.fl_str_mv |
Aeroelasticidade Aeroelasticity Caos Chaos Entropia Entropy Expoentes de Lyapunov Lyapunov exponents Nonlinear systems Recontrução do espaço de estados Sistemas não lineares Space state reconstruction |
topic |
Aeroelasticidade Aeroelasticity Caos Chaos Entropia Entropy Expoentes de Lyapunov Lyapunov exponents Nonlinear systems Recontrução do espaço de estados Sistemas não lineares Space state reconstruction |
description |
A análise de sistemas dinâmicos não lineares pode ser baseada em séries obtidas de modelos matemáticos ou de experimentos. Modelos matemáticos para respostas aeroelásticas associadas ao estol dinâmico são muito difíceis de obter. Neste caso, experimentos e ensaios em vôo parecem fornecer uma base mais apropriada para a análise da dinâmica não linear. Técnicas de sistemas dinâmicos baseadas em análise de séries temporais podem ser aplicadas para a aeroelasticidade não linear. Quando tem-se disponível apenas séries experimentais, as técnicas de reconstrução do espaço de estados têm sido extensivamente utilizadas. Além disso, os expoentes de Lyapunov fornecem uma caracterização qualitativa e quantitativa do comportamento caótico de sistemas não lineares, assim, um expoente de Lyapunov positivo é um forte indicativo de caos. Medidas de entropia também fornecem informações importantes da complexidade do sistema não linear, consequentemente sua aplicação às séries temporais aeroelásticas representam uma forma apropriada para identificar movimentos caóticos. Este trabalho apresenta a aplicação de técnicas da análise de séries temporais, tais como, reconstrução do espaço de estados, expoentes de Lyapunov e medidas de entropia para respostas aeroelásticas não lineares para prever o comportamento caótico. Um modelo de asa flexível foi construído e testado em túnel de vento de circuito fechado com velocidade do escoamento variando entre 9,0 e 17,0 m/s. O modelo foi montado sobre uma plataforma giratória que produzia variações no ângulo de incidência. Deformações estruturais foram capturadas por meio de extensômetros que forneciam informações da resposta aeroelástica. O método da defasagem é utilizado para reconstruir o espaço de estados das séries temporais obtidas no experimento. Para obter a defasagem utilizada na reconstrução foi usada a análise da função de autocorrelação. Para determinar a dimensão do atrator é calculada a integral de correlação. A evolução do espectro de frequências e do espaço de estados reconstruído é analisada com as variações da velocidade do escoamento e da frequência de oscilação da plataforma. Os expoentes de Lyapunov e a entropia de Rényi foram obtidos para identificar o comportamento caótico. Os resultados foram analisados com a variação da velocidade do escoamento e da frequência de oscilação da plataforma. As técnicas utilizadas foram eficientes para observar o aparecimento de mudanças no sistema e do comportamento caótico com uma escala de interação fluido-estrutura complexa para movimentos com altos ângulos de incidência. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-04-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18148/tde-12062008-113731/ |
url |
http://www.teses.usp.br/teses/disponiveis/18/18148/tde-12062008-113731/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256895229788160 |