Activity recognition and bioinspired approaches for robotics in intelligent environments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082021-112227/ |
Resumo: | Home automation projects have been developed for some time, having evolved into the socalled smart environments. These environments are characterised by the presence of sets of sensors and actuators, connected in order to respond appropriately and proactively to different situations. The integration of intelligent environments with robots allows for the introduction of additional sensing capabilities, besides performing tasks with greater flexibility and less mechanical complexity than traditional monolithic robots. To endow such environments with truly autonomous behaviours, algorithms must extract semantically meaningful information from whichever sensor data is available. Human activity recognition is one of the most active fields of research within this context. In this project, the design and evaluations of learning techniques for human activity recognition was addressed, considering different sensor modalities. Two types of neural networks, based on combinations of Convolutional Neural Networks to Recurrent Networks with Long Short-Term Memory or Temporal Convolutional Networks, were proposed and evaluated on two public datasets for multimodal activity recognition from videos and inertial sensors. The resulting framework was then introduced to a new dataset, the HWU-USP activities dataset, collected as part of this work, in an actual environment endowed with videos, inertial units, and ambient sensors. This design allowed for assessing the influence of ambient sensors, synchronised to the inertial and video data, to the accuracy of the results, which has proven to be a promising approach. Also, the new dataset provided complex activities with long-term dependencies, evaluated through segment-wise classifiers simulating the results for real-time applications. In a second moment, works were developed on neurophysiological data from primates induced to Parkinsons disease. Those studies ranged from data analysis and classification, using neural networks, to the construction of a computational model of the affected structures within the brain. Although different from the studies on activity recognition and assistive technologies, which were the focus of this thesis, these works were related in the nature of the techniques used, and their results were part of the application scenario developed next. Finally, an application scenario was designed and implemented as a robot simulation, so that the developed module could be evaluated in practical situations. For the behaviour selection mechanism, a bioinspired approach based on computational models of the basal ganglia-thalamus-cortex circuit was evaluated and compared to non-bioinspired approaches based on simple heuristics. |
id |
USP_f34031150c378254bac65eca61066163 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11082021-112227 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Activity recognition and bioinspired approaches for robotics in intelligent environmentsReconhecimento de atividades e abordagens bioinspiradas para robótica em ambientes inteligentesActivities datasetAprendizado profundoBase de dados de atividadesBioinspired computational modelDeep learningHuman activity recognitionModelo computacional bioinspiradoNeuroroboticsNeurorrobóticaReconhecimento de atividade humanaHome automation projects have been developed for some time, having evolved into the socalled smart environments. These environments are characterised by the presence of sets of sensors and actuators, connected in order to respond appropriately and proactively to different situations. The integration of intelligent environments with robots allows for the introduction of additional sensing capabilities, besides performing tasks with greater flexibility and less mechanical complexity than traditional monolithic robots. To endow such environments with truly autonomous behaviours, algorithms must extract semantically meaningful information from whichever sensor data is available. Human activity recognition is one of the most active fields of research within this context. In this project, the design and evaluations of learning techniques for human activity recognition was addressed, considering different sensor modalities. Two types of neural networks, based on combinations of Convolutional Neural Networks to Recurrent Networks with Long Short-Term Memory or Temporal Convolutional Networks, were proposed and evaluated on two public datasets for multimodal activity recognition from videos and inertial sensors. The resulting framework was then introduced to a new dataset, the HWU-USP activities dataset, collected as part of this work, in an actual environment endowed with videos, inertial units, and ambient sensors. This design allowed for assessing the influence of ambient sensors, synchronised to the inertial and video data, to the accuracy of the results, which has proven to be a promising approach. Also, the new dataset provided complex activities with long-term dependencies, evaluated through segment-wise classifiers simulating the results for real-time applications. In a second moment, works were developed on neurophysiological data from primates induced to Parkinsons disease. Those studies ranged from data analysis and classification, using neural networks, to the construction of a computational model of the affected structures within the brain. Although different from the studies on activity recognition and assistive technologies, which were the focus of this thesis, these works were related in the nature of the techniques used, and their results were part of the application scenario developed next. Finally, an application scenario was designed and implemented as a robot simulation, so that the developed module could be evaluated in practical situations. For the behaviour selection mechanism, a bioinspired approach based on computational models of the basal ganglia-thalamus-cortex circuit was evaluated and compared to non-bioinspired approaches based on simple heuristics.Projetos de automação residencial têm sido desenvolvidos há algum tempo, tendo evoluído para os chamados ambientes inteligentes. Esses ambientes são caracterizados pela presença de conjuntos de sensores e atuadores, conectados de forma a responder adequada e proativamente a diferentes situações. A integração de ambientes inteligentes com robôs permite a introdução de capacidades adicionais de sensoriamento, além da realização de tarefas com maior flexibilidade e menor complexidade mecânica do que os robôs monolíticos tradicionais. Para dotar tais ambientes de comportamentos verdadeiramente autônomos, algoritmos devem extrair informações semanticamente significativas de quaisquer dados sensoriais disponíveis. Reconhecimento de atividade humana é um dos campos de pesquisa mais ativos dentro deste contexto. Neste projeto, foi abordado o projeto e avaliação de técnicas de aprendizado para reconhecimento da atividade humana, considerando diferentes modalidades de sensores. Dois tipos de redes neurais, baseadas em combinações de Redes Neurais Convolucionais com Redes Recorrentes com Memória de Curto e Longo Prazo ou Redes Convolucionais Temporais, foram propostas e avaliadas em duas bases de dados públicas para reconhecimento de atividade multimodal de vídeos e sensores inerciais. A estrutura resultante foi então empregada a um novo conjunto de dados, o HWU-USP activities dataset, coletado como parte deste trabalho, em um ambiente real dotado de vídeos, unidades inerciais e sensores ambientais. Foi avaliada a influência dos sensores ambientais, sincronizados aos dados inerciais e de vídeo, na acurácia dos resultados, tendo se mostrado uma abordagem promissora. Além disso, o novo conjunto de dados foi provido de atividades complexas com dependências de longo prazo, avaliadas por meio de classificadores baseados em segmentos de comprimento limitado, simulando os resultados para aplicações de tempo real. Em um segundo momento, foram desenvolvidos trabalhos sobre dados neurofisiológicos de primatas induzidos à doença de Parkinson, indo de análises e classificação dos dados, com uso de redes neurais, até a construção de um modelo computacional das estruturas acometidas dentro do cérebro. Embora distinta dos estudos sobre reconhecimento de atividades e tecnologias assistivas, focos desta tese, esses trabalhos foram relacionados na natureza das técnicas empregadas, e seus resultados fizeram parte do cenário de aplicação desenvolvido em seguida. Por fim, foi projetado e implementado um cenário de aplicação na forma de simulação robótica, de modo que o módulo desenvolvido pudesse ser avaliado em situações práticas. Para o mecanismo de seleção de comportamento, uma abordagem bioinspirada baseada em modelos computacionais do circuito núcleos da base-tálamo-córtex foi avaliada e comparada a abordagens não bioinspiradas baseadas em heurísticas simples.Biblioteca Digitais de Teses e Dissertações da USPRomero, Roseli Aparecida FrancelinVargas, Patrícia AmâncioRanieri, Caetano Mazzoni2021-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082021-112227/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-11T22:12:02Zoai:teses.usp.br:tde-11082021-112227Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-11T22:12:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Activity recognition and bioinspired approaches for robotics in intelligent environments Reconhecimento de atividades e abordagens bioinspiradas para robótica em ambientes inteligentes |
title |
Activity recognition and bioinspired approaches for robotics in intelligent environments |
spellingShingle |
Activity recognition and bioinspired approaches for robotics in intelligent environments Ranieri, Caetano Mazzoni Activities dataset Aprendizado profundo Base de dados de atividades Bioinspired computational model Deep learning Human activity recognition Modelo computacional bioinspirado Neurorobotics Neurorrobótica Reconhecimento de atividade humana |
title_short |
Activity recognition and bioinspired approaches for robotics in intelligent environments |
title_full |
Activity recognition and bioinspired approaches for robotics in intelligent environments |
title_fullStr |
Activity recognition and bioinspired approaches for robotics in intelligent environments |
title_full_unstemmed |
Activity recognition and bioinspired approaches for robotics in intelligent environments |
title_sort |
Activity recognition and bioinspired approaches for robotics in intelligent environments |
author |
Ranieri, Caetano Mazzoni |
author_facet |
Ranieri, Caetano Mazzoni |
author_role |
author |
dc.contributor.none.fl_str_mv |
Romero, Roseli Aparecida Francelin Vargas, Patrícia Amâncio |
dc.contributor.author.fl_str_mv |
Ranieri, Caetano Mazzoni |
dc.subject.por.fl_str_mv |
Activities dataset Aprendizado profundo Base de dados de atividades Bioinspired computational model Deep learning Human activity recognition Modelo computacional bioinspirado Neurorobotics Neurorrobótica Reconhecimento de atividade humana |
topic |
Activities dataset Aprendizado profundo Base de dados de atividades Bioinspired computational model Deep learning Human activity recognition Modelo computacional bioinspirado Neurorobotics Neurorrobótica Reconhecimento de atividade humana |
description |
Home automation projects have been developed for some time, having evolved into the socalled smart environments. These environments are characterised by the presence of sets of sensors and actuators, connected in order to respond appropriately and proactively to different situations. The integration of intelligent environments with robots allows for the introduction of additional sensing capabilities, besides performing tasks with greater flexibility and less mechanical complexity than traditional monolithic robots. To endow such environments with truly autonomous behaviours, algorithms must extract semantically meaningful information from whichever sensor data is available. Human activity recognition is one of the most active fields of research within this context. In this project, the design and evaluations of learning techniques for human activity recognition was addressed, considering different sensor modalities. Two types of neural networks, based on combinations of Convolutional Neural Networks to Recurrent Networks with Long Short-Term Memory or Temporal Convolutional Networks, were proposed and evaluated on two public datasets for multimodal activity recognition from videos and inertial sensors. The resulting framework was then introduced to a new dataset, the HWU-USP activities dataset, collected as part of this work, in an actual environment endowed with videos, inertial units, and ambient sensors. This design allowed for assessing the influence of ambient sensors, synchronised to the inertial and video data, to the accuracy of the results, which has proven to be a promising approach. Also, the new dataset provided complex activities with long-term dependencies, evaluated through segment-wise classifiers simulating the results for real-time applications. In a second moment, works were developed on neurophysiological data from primates induced to Parkinsons disease. Those studies ranged from data analysis and classification, using neural networks, to the construction of a computational model of the affected structures within the brain. Although different from the studies on activity recognition and assistive technologies, which were the focus of this thesis, these works were related in the nature of the techniques used, and their results were part of the application scenario developed next. Finally, an application scenario was designed and implemented as a robot simulation, so that the developed module could be evaluated in practical situations. For the behaviour selection mechanism, a bioinspired approach based on computational models of the basal ganglia-thalamus-cortex circuit was evaluated and compared to non-bioinspired approaches based on simple heuristics. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082021-112227/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082021-112227/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256871189086208 |