Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3143/tde-10112008-113506/ |
Resumo: | Este trabalho apresenta o desenvolvimento de algoritmos para determinação da estimativa da distância de ocorrência de falta em uma linha de transmissão de alta tensão, em relação a um terminal local, e também a classificação do tipo de falta, utilizando técnicas baseadas em redes neurais artificiais. Os testes e a validação dos algoritmos propostos são feitos a partir de dados simulados para os fasores de tensão e corrente, em regime permanente, com uso da linguagem MATLAB. Os fasores são obtidos com uso de cálculo tradicional de curto e parâmetros reais de uma linha de transmissão conhecida. Em casos reais os fasores seriam obtidos de amostras de tensões e correntes detectadas por dispositivos de proteção localizados nos terminais local e remoto da linha de transmissão em análise. As simulações das redes neurais para a classificação do tipo de falta e para a obtenção da estimativa da distância de falta foram feitas com duas rotinas escritas em MATLAB levando em consideração erros de medição dos fasores. Os resultados obtidos permitem avaliar a eficiência e a precisão dos algoritmos propostos em relação aos já existentes e conhecidos na literatura, e que usam somente equacionamento elétrico. |
id |
USP_f6a04551b9c7a85cd7fd24801bd8626d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10112008-113506 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais.Classification and location faults in transmission lines, using different artificial neural networks architectures.Artificial intelligenceArtificial neural networksFault locationLinhas de transmissão de energia elétricaRedes neuraisTransmission linesEste trabalho apresenta o desenvolvimento de algoritmos para determinação da estimativa da distância de ocorrência de falta em uma linha de transmissão de alta tensão, em relação a um terminal local, e também a classificação do tipo de falta, utilizando técnicas baseadas em redes neurais artificiais. Os testes e a validação dos algoritmos propostos são feitos a partir de dados simulados para os fasores de tensão e corrente, em regime permanente, com uso da linguagem MATLAB. Os fasores são obtidos com uso de cálculo tradicional de curto e parâmetros reais de uma linha de transmissão conhecida. Em casos reais os fasores seriam obtidos de amostras de tensões e correntes detectadas por dispositivos de proteção localizados nos terminais local e remoto da linha de transmissão em análise. As simulações das redes neurais para a classificação do tipo de falta e para a obtenção da estimativa da distância de falta foram feitas com duas rotinas escritas em MATLAB levando em consideração erros de medição dos fasores. Os resultados obtidos permitem avaliar a eficiência e a precisão dos algoritmos propostos em relação aos já existentes e conhecidos na literatura, e que usam somente equacionamento elétrico.This work presents the development of algorithms for determination of the estimate of the distance of occurrence of fault in a high voltage transmission line, in relation to a local terminal, and also the classification of the fault type, using techniques based on artificial neural networks. The tests and the validation of the proposed algorithms are made using simulated data for the voltage and current phasors, in steady state, with use of the MATLAB language. The phasors are obtained with use of traditional calculation of short-circuit and real parameters of a known transmission line. In real cases the phasors would be obtained with samples of voltages and currents detected by protection devices located in the local and remote terminals of the transmission line in analysis. The simulations of the neural networks for the classification of the fault type and for the obtaining the estimate of the fault distance were done with two routines written in MATLAB taking into account measurement errors of the phasors. The obtained results allow to evaluate the efficiency and the accuracy of the proposed algorithms in relation to the already existent and known in the literature, and that use only electric equations.Biblioteca Digitais de Teses e Dissertações da USPPereira, Carlos Eduardo de MoraisMenezes, Marlim Pereira2008-08-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3143/tde-10112008-113506/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-10112008-113506Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. Classification and location faults in transmission lines, using different artificial neural networks architectures. |
title |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. |
spellingShingle |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. Menezes, Marlim Pereira Artificial intelligence Artificial neural networks Fault location Linhas de transmissão de energia elétrica Redes neurais Transmission lines |
title_short |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. |
title_full |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. |
title_fullStr |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. |
title_full_unstemmed |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. |
title_sort |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. |
author |
Menezes, Marlim Pereira |
author_facet |
Menezes, Marlim Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pereira, Carlos Eduardo de Morais |
dc.contributor.author.fl_str_mv |
Menezes, Marlim Pereira |
dc.subject.por.fl_str_mv |
Artificial intelligence Artificial neural networks Fault location Linhas de transmissão de energia elétrica Redes neurais Transmission lines |
topic |
Artificial intelligence Artificial neural networks Fault location Linhas de transmissão de energia elétrica Redes neurais Transmission lines |
description |
Este trabalho apresenta o desenvolvimento de algoritmos para determinação da estimativa da distância de ocorrência de falta em uma linha de transmissão de alta tensão, em relação a um terminal local, e também a classificação do tipo de falta, utilizando técnicas baseadas em redes neurais artificiais. Os testes e a validação dos algoritmos propostos são feitos a partir de dados simulados para os fasores de tensão e corrente, em regime permanente, com uso da linguagem MATLAB. Os fasores são obtidos com uso de cálculo tradicional de curto e parâmetros reais de uma linha de transmissão conhecida. Em casos reais os fasores seriam obtidos de amostras de tensões e correntes detectadas por dispositivos de proteção localizados nos terminais local e remoto da linha de transmissão em análise. As simulações das redes neurais para a classificação do tipo de falta e para a obtenção da estimativa da distância de falta foram feitas com duas rotinas escritas em MATLAB levando em consideração erros de medição dos fasores. Os resultados obtidos permitem avaliar a eficiência e a precisão dos algoritmos propostos em relação aos já existentes e conhecidos na literatura, e que usam somente equacionamento elétrico. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-08-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-10112008-113506/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-10112008-113506/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256925300850688 |