Uma estratégia euclidiana para o estudo do efeito Unruh

Detalhes bibliográficos
Autor(a) principal: Lopes, Pedro Tavares Paes
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-125203/
Resumo: Neste trabalho nós propomos uma estratégia Euclidiana para entender o efeito Unruh. Com este objetivo, nós inicialmente o estudamos para campos livres escalares sem massa, numa forma que é normalmente apresentada aos físicos e que é mais próxima ao trabalho original de Unruh I321| . Logo em seguida, deduzimos o efeito de um ponto de vista algébrico. Com este objetivo, estudamos as propriedades e as definições de estados KMS para compreender como um estado de equilíbrio é descrito na abordagem algébrica. Apresentamos os axiomas de Wightman para campos escalares assim como os de Osterwalder-Schrader. Usamos, então, o Teorema de Bisognano-Wichmann para estes campos e concluímos, baseados no trabalho de Sewell [27], que um observador uniformemente acelerado vê o estado de vácuo dos observadores inerciais como um estado KMS, e portanto, como um estado de equilíbrio. Novamente, concluímos a existência do efeito Unruh. Finalmente estudamos algumas relações entre probabilidade e análise funcional. Este estudo é fundamental para o entendimento do trabalho de Klein e Landau [15] e de Gérard e Jakel [7]. Estes trabalhos afirmam que existe uma relação biunívoca entre certos estados KMS e certos processos estocásticos (Klein e Landau) e uma relação entre certos processos estocásticos e espaços de trajetórias generalizados (Gérard e Jakel). Usando estes trabalhos e as funções de Schwinger para campos escalares, deduzimos o efeito Unruh de uma nova maneira. Acreditamos que este trabalho mostra um ponto de vista interessante do efeito Unruh e ilustra o uso do formalismo Euclidiano em teorias quânticas dos campos. Mesmo que algumas demonstrações para uma prova completa do efeito, usando técnicas Euclidianas, não são obtidas, devido às dificuldades técnicas encontradas, acreditamos que o material apresentado neste trabalho fornece, no mínimo, uma boa estratégia para a compreensão completa deste fenômeno físico. Além disto, as técnicas que são mostradas podem ser usadas em diversos problemas, como a construção de campos interagentes a uma temperatura finita, que permanecem atuais e promissores.
id USP_f7896bc990f6254f2ae74096f76872e0
oai_identifier_str oai:teses.usp.br:tde-29022008-125203
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma estratégia euclidiana para o estudo do efeito UnruhAn euclidean approach as a method to study the Unruh effectFísica matemáticaMathematical physicsQuantum field theoryRelatividade (física)RelativityTeoria quântia de campoNeste trabalho nós propomos uma estratégia Euclidiana para entender o efeito Unruh. Com este objetivo, nós inicialmente o estudamos para campos livres escalares sem massa, numa forma que é normalmente apresentada aos físicos e que é mais próxima ao trabalho original de Unruh I321| . Logo em seguida, deduzimos o efeito de um ponto de vista algébrico. Com este objetivo, estudamos as propriedades e as definições de estados KMS para compreender como um estado de equilíbrio é descrito na abordagem algébrica. Apresentamos os axiomas de Wightman para campos escalares assim como os de Osterwalder-Schrader. Usamos, então, o Teorema de Bisognano-Wichmann para estes campos e concluímos, baseados no trabalho de Sewell [27], que um observador uniformemente acelerado vê o estado de vácuo dos observadores inerciais como um estado KMS, e portanto, como um estado de equilíbrio. Novamente, concluímos a existência do efeito Unruh. Finalmente estudamos algumas relações entre probabilidade e análise funcional. Este estudo é fundamental para o entendimento do trabalho de Klein e Landau [15] e de Gérard e Jakel [7]. Estes trabalhos afirmam que existe uma relação biunívoca entre certos estados KMS e certos processos estocásticos (Klein e Landau) e uma relação entre certos processos estocásticos e espaços de trajetórias generalizados (Gérard e Jakel). Usando estes trabalhos e as funções de Schwinger para campos escalares, deduzimos o efeito Unruh de uma nova maneira. Acreditamos que este trabalho mostra um ponto de vista interessante do efeito Unruh e ilustra o uso do formalismo Euclidiano em teorias quânticas dos campos. Mesmo que algumas demonstrações para uma prova completa do efeito, usando técnicas Euclidianas, não são obtidas, devido às dificuldades técnicas encontradas, acreditamos que o material apresentado neste trabalho fornece, no mínimo, uma boa estratégia para a compreensão completa deste fenômeno físico. Além disto, as técnicas que são mostradas podem ser usadas em diversos problemas, como a construção de campos interagentes a uma temperatura finita, que permanecem atuais e promissores.This paper proposes a Euclidean strategy to understand the Unruh effect. On that ground we first study it for free massless scalar fields the way it is usually presented to pliysicists, which is closer to Unruh\'s original work [32]. Then we infer the effect from an algebraic perspective. We study the proprieties and definitions of KklS states in order to understand the description of an equilibrium state in the algebraic approach. We present the Wightman\'s as well as Osterwalder-Schrader\'s axioms for scalar fields. Then we use the Bisognano-Wichmann theorem for these fields and conclude, based on Sewell work 1271, that a uniformly accelerated observer will observe tlie vacuum state of inertial observers as a KMS state and thus as an equilibrium state. Once again we infer the existence of the Cnruh effect. Finally we study some relations between probability and functional analysis. This study is crucial for understanding the work of Klein and Landau 1151 as well as of Gérard and Jakel (71. They state there is a biunivocal relation between certain KMS states and certain stochastic processes (Klein and Landau) and a relation between certain stochastic processes and generalized path spaces (Gérard and Jakel). Lsing these works and Schwinger functions for scalar fields, we deduce tlie Unruh effect in a new way. LVe believe this work shows an interesting aspect of the Unruh effect and represents the use of Euclidean formalism in quantum field theory. Although some demonstrations for a complete proof of the Unruh effect using Euclidean techniques were not obtained due to technical difficulties we faced, we believe the material presented in this paper provides at least a good strategy for the complete understanding of this physical phenomenon. Furthermore the techniques shown, which remain current and promising, can be used in different problems, sudy as the construction of interacting fields at a finite temperature.Biblioteca Digitais de Teses e Dissertações da USPBarata, Joao Carlos AlvesLopes, Pedro Tavares Paes2007-06-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-125203/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-29022008-125203Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma estratégia euclidiana para o estudo do efeito Unruh
An euclidean approach as a method to study the Unruh effect
title Uma estratégia euclidiana para o estudo do efeito Unruh
spellingShingle Uma estratégia euclidiana para o estudo do efeito Unruh
Lopes, Pedro Tavares Paes
Física matemática
Mathematical physics
Quantum field theory
Relatividade (física)
Relativity
Teoria quântia de campo
title_short Uma estratégia euclidiana para o estudo do efeito Unruh
title_full Uma estratégia euclidiana para o estudo do efeito Unruh
title_fullStr Uma estratégia euclidiana para o estudo do efeito Unruh
title_full_unstemmed Uma estratégia euclidiana para o estudo do efeito Unruh
title_sort Uma estratégia euclidiana para o estudo do efeito Unruh
author Lopes, Pedro Tavares Paes
author_facet Lopes, Pedro Tavares Paes
author_role author
dc.contributor.none.fl_str_mv Barata, Joao Carlos Alves
dc.contributor.author.fl_str_mv Lopes, Pedro Tavares Paes
dc.subject.por.fl_str_mv Física matemática
Mathematical physics
Quantum field theory
Relatividade (física)
Relativity
Teoria quântia de campo
topic Física matemática
Mathematical physics
Quantum field theory
Relatividade (física)
Relativity
Teoria quântia de campo
description Neste trabalho nós propomos uma estratégia Euclidiana para entender o efeito Unruh. Com este objetivo, nós inicialmente o estudamos para campos livres escalares sem massa, numa forma que é normalmente apresentada aos físicos e que é mais próxima ao trabalho original de Unruh I321| . Logo em seguida, deduzimos o efeito de um ponto de vista algébrico. Com este objetivo, estudamos as propriedades e as definições de estados KMS para compreender como um estado de equilíbrio é descrito na abordagem algébrica. Apresentamos os axiomas de Wightman para campos escalares assim como os de Osterwalder-Schrader. Usamos, então, o Teorema de Bisognano-Wichmann para estes campos e concluímos, baseados no trabalho de Sewell [27], que um observador uniformemente acelerado vê o estado de vácuo dos observadores inerciais como um estado KMS, e portanto, como um estado de equilíbrio. Novamente, concluímos a existência do efeito Unruh. Finalmente estudamos algumas relações entre probabilidade e análise funcional. Este estudo é fundamental para o entendimento do trabalho de Klein e Landau [15] e de Gérard e Jakel [7]. Estes trabalhos afirmam que existe uma relação biunívoca entre certos estados KMS e certos processos estocásticos (Klein e Landau) e uma relação entre certos processos estocásticos e espaços de trajetórias generalizados (Gérard e Jakel). Usando estes trabalhos e as funções de Schwinger para campos escalares, deduzimos o efeito Unruh de uma nova maneira. Acreditamos que este trabalho mostra um ponto de vista interessante do efeito Unruh e ilustra o uso do formalismo Euclidiano em teorias quânticas dos campos. Mesmo que algumas demonstrações para uma prova completa do efeito, usando técnicas Euclidianas, não são obtidas, devido às dificuldades técnicas encontradas, acreditamos que o material apresentado neste trabalho fornece, no mínimo, uma boa estratégia para a compreensão completa deste fenômeno físico. Além disto, as técnicas que são mostradas podem ser usadas em diversos problemas, como a construção de campos interagentes a uma temperatura finita, que permanecem atuais e promissores.
publishDate 2007
dc.date.none.fl_str_mv 2007-06-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-125203/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-125203/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257451300126720