Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos

Detalhes bibliográficos
Autor(a) principal: Silva, Diogo Matos da
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/95/95131/tde-14122020-180409/
Resumo: A detecção de parasitas no sangue periférico é prova definitiva de infecção de Trypanosoma cruzi em vertebrados. O acompanhamento da parasitemia de T. cruzi em camundongos infectados é necessário tanto para a manutenção da cepa estudada em animais no laboratório, quanto para se inferir a modulação da infecção por diferentes tratamentos. A análise de amostras por esfregaço sanguíneo é utilizada para estudos morfométricos, mas apresenta baixa sensibilidade quando utilizada para parasitemia manual. É preferível que a contagem seja realizada de forma automatizada com máxima sensibilidade, em menor intervalo de tempo e com menores custos. Técnicas de processamento de imagens e reconhecimento de padrões já vêm sendo utilizadas em micrografias digitais com boa resolução para impressão, a partir de 300 ppp (pontos por polegada). Propomos a aplicação dessas técnicas em imagens com baixa densidade de pontos por polegada para parasitemia da cepa Y de T. cruzi, na forma tripomastigota. Analisamos microgafias de esfregaço sanguíneo coradas com Giemsa que foram obtidas com câmeras de dispositivos móveis. As câmeras desses aparelhos são capazes de capturar imagens com 72 ppp em uma área de 4000x3000 pixels, ou 12 megapixels. Realizamos a extração de um conjunto de descritores composto por medidas geométricas, de curvatura e de cor e textura do cinetoplasto e do núcleo de 2304 parasitos. Os descritores extraídos foram separados em conjuntos de treinamento e de teste e classificados com SVM. Os resultados de precisão, sensibilidade, especificidade e área ROC do método proposto foram de 91,4%, 91,7%, 97,9% e 94,5%, respectivamente. Nossos resultados demonstram que a automatização da análise de imagens com baixa densidade de ppp é uma alternativa viável para a redução de custos e ganho de eficiência na utilização do microscópio ótico.
id USP_f84373dc77327fb6aa9a32a153a1d994
oai_identifier_str oai:teses.usp.br:tde-14122020-180409
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontosImage analysis and recognition of the tripomastigote form of Trypanosoma cruzi for automated quantification of parasites in images with low densitiy of pointsAprendizado de máquinaMachine learningParasitemiaParasitemiaSVMSVMTrypanosoma cruziTrypanosoma cruziA detecção de parasitas no sangue periférico é prova definitiva de infecção de Trypanosoma cruzi em vertebrados. O acompanhamento da parasitemia de T. cruzi em camundongos infectados é necessário tanto para a manutenção da cepa estudada em animais no laboratório, quanto para se inferir a modulação da infecção por diferentes tratamentos. A análise de amostras por esfregaço sanguíneo é utilizada para estudos morfométricos, mas apresenta baixa sensibilidade quando utilizada para parasitemia manual. É preferível que a contagem seja realizada de forma automatizada com máxima sensibilidade, em menor intervalo de tempo e com menores custos. Técnicas de processamento de imagens e reconhecimento de padrões já vêm sendo utilizadas em micrografias digitais com boa resolução para impressão, a partir de 300 ppp (pontos por polegada). Propomos a aplicação dessas técnicas em imagens com baixa densidade de pontos por polegada para parasitemia da cepa Y de T. cruzi, na forma tripomastigota. Analisamos microgafias de esfregaço sanguíneo coradas com Giemsa que foram obtidas com câmeras de dispositivos móveis. As câmeras desses aparelhos são capazes de capturar imagens com 72 ppp em uma área de 4000x3000 pixels, ou 12 megapixels. Realizamos a extração de um conjunto de descritores composto por medidas geométricas, de curvatura e de cor e textura do cinetoplasto e do núcleo de 2304 parasitos. Os descritores extraídos foram separados em conjuntos de treinamento e de teste e classificados com SVM. Os resultados de precisão, sensibilidade, especificidade e área ROC do método proposto foram de 91,4%, 91,7%, 97,9% e 94,5%, respectivamente. Nossos resultados demonstram que a automatização da análise de imagens com baixa densidade de ppp é uma alternativa viável para a redução de custos e ganho de eficiência na utilização do microscópio ótico.Detection of parasites in peripheral blood presents complete proof of Trypanosoma cruzi infection in vertebrates. Monitoring of T. cruzi parasitemia in infected mice is necessary for maintaining the strain studied in laboratory animals and for inferring the modulation of infection by different treatments. The analysis of blood smear samples is used for morphometric studies, but it presents low sensitivity when used for manual parasitemia. It is preferable to perform an automated couting with maximum sensitivity, in a shorter time, and with lower costs. Image processing and pattern recognition techniques have already been used in digital micrographs with good resolution for printing, from 300 dpi (dots per inch). We propose the application of these techniques in images with low density of dots per inch in the parasitemia of strain Y of T. cruzi, in trypomastigote form. We analyzed micrographs of blood smear stained with Giemsa obtained using mobile device cameras. Those cameras are capable of capturing images with 72 dpi in an area of 4000x3000 pixels, or 12 megapixels. We extracted a set of descriptors composed of geometric, curvature, color and texture measurements of the kinetoplast and nucleus of 2304 parasites. Those descriptors were divided into training and test sets and classified using SVM. The values of precision, sensitivity, specificity, and ROC area of the proposed method were 91.4%, 91.7, 97.9% and 94.5%, respectively. Automating image analysis with low dpi density is a viable alternative for reducing costs and gain efficiency in the use of the optical microscope.Biblioteca Digitais de Teses e Dissertações da USPCosta, Luciano da FontouraNakaya, Helder Takashi ImotoSilva, Diogo Matos da2020-08-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/95/95131/tde-14122020-180409/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-02-15T23:00:02Zoai:teses.usp.br:tde-14122020-180409Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-02-15T23:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
Image analysis and recognition of the tripomastigote form of Trypanosoma cruzi for automated quantification of parasites in images with low densitiy of points
title Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
spellingShingle Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
Silva, Diogo Matos da
Aprendizado de máquina
Machine learning
Parasitemia
Parasitemia
SVM
SVM
Trypanosoma cruzi
Trypanosoma cruzi
title_short Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
title_full Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
title_fullStr Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
title_full_unstemmed Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
title_sort Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos
author Silva, Diogo Matos da
author_facet Silva, Diogo Matos da
author_role author
dc.contributor.none.fl_str_mv Costa, Luciano da Fontoura
Nakaya, Helder Takashi Imoto
dc.contributor.author.fl_str_mv Silva, Diogo Matos da
dc.subject.por.fl_str_mv Aprendizado de máquina
Machine learning
Parasitemia
Parasitemia
SVM
SVM
Trypanosoma cruzi
Trypanosoma cruzi
topic Aprendizado de máquina
Machine learning
Parasitemia
Parasitemia
SVM
SVM
Trypanosoma cruzi
Trypanosoma cruzi
description A detecção de parasitas no sangue periférico é prova definitiva de infecção de Trypanosoma cruzi em vertebrados. O acompanhamento da parasitemia de T. cruzi em camundongos infectados é necessário tanto para a manutenção da cepa estudada em animais no laboratório, quanto para se inferir a modulação da infecção por diferentes tratamentos. A análise de amostras por esfregaço sanguíneo é utilizada para estudos morfométricos, mas apresenta baixa sensibilidade quando utilizada para parasitemia manual. É preferível que a contagem seja realizada de forma automatizada com máxima sensibilidade, em menor intervalo de tempo e com menores custos. Técnicas de processamento de imagens e reconhecimento de padrões já vêm sendo utilizadas em micrografias digitais com boa resolução para impressão, a partir de 300 ppp (pontos por polegada). Propomos a aplicação dessas técnicas em imagens com baixa densidade de pontos por polegada para parasitemia da cepa Y de T. cruzi, na forma tripomastigota. Analisamos microgafias de esfregaço sanguíneo coradas com Giemsa que foram obtidas com câmeras de dispositivos móveis. As câmeras desses aparelhos são capazes de capturar imagens com 72 ppp em uma área de 4000x3000 pixels, ou 12 megapixels. Realizamos a extração de um conjunto de descritores composto por medidas geométricas, de curvatura e de cor e textura do cinetoplasto e do núcleo de 2304 parasitos. Os descritores extraídos foram separados em conjuntos de treinamento e de teste e classificados com SVM. Os resultados de precisão, sensibilidade, especificidade e área ROC do método proposto foram de 91,4%, 91,7%, 97,9% e 94,5%, respectivamente. Nossos resultados demonstram que a automatização da análise de imagens com baixa densidade de ppp é uma alternativa viável para a redução de custos e ganho de eficiência na utilização do microscópio ótico.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/95/95131/tde-14122020-180409/
url https://www.teses.usp.br/teses/disponiveis/95/95131/tde-14122020-180409/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256979882377216