Hindered densification as a porogenic mechanism for alumina-based thermal insulators

Detalhes bibliográficos
Autor(a) principal: Emílio, Ana Beatriz Verdi
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18158/tde-26012021-092249/
Resumo: Porous ceramics for application as high-temperature thermal insulators (600°C-1600°C) have been investigated as an alternative to the use of block and blankets of ceramic fibers. They present potential for such application because of the combination of low conductivity of porous structures (less than 5 W(m.K)-1 at 1200°C) with the refractoriness of ceramics. However, they do not resist densification as well as fibers after long periods at high temperatures. The presence of porosity reduces thermal conduction, because pores are filled with gases with low conductivity and also provoke scattering of photons, which are responsible for radiation process that occurs at high temperatures. To be effective it is also necessary that the pores be closed and small (< 4 mm diameter), in order to avoid the convection process. To maintain porosity and stability at high temperatures, it is necessary that the main sintering mechanism be surface diffusion, because it does not promote significant densification. This work is based on the principles of sintering and heat conduction to propose a novel porogenic mechanism. Thus, this work studied the compacting of pre-sintered aluminum hydroxide (Al(OH)3) because the particles obtained have internal pores, intrinsically resistant to densification due to their low surface area and curved shape. Three compaction methods were used: isostatic and uniaxial pressing and direct cast. The pressed samples resulted in lower values of total porosity at 1600°C (61.5% for uniaxial and 56.3% for isostatic), as they produced broken filaments during the application of pressure which increased the compaction of the particles and facilitated densification. The samples obtained by direct molding, on the other hand, did not compact well because the main diffusion mechanism was surface diffusion, maintaining porosity at high levels (74.4%). The physical properties obtained such as flexural strength (3.75 MPa) and rigity (4.57 GPa) are satisfactory for the application as thermal insulator (0.5-1 MPa and 2 GPa, respectively). In addition, the samples showed low thermal conductivity (0.49 W·m-1 ·°C-1 to 1400°C), low shrinkage after sintering (11,92% at 1600°C) and high resistance to thermal shock due to the low expansion coefficient obtained (5.7 10-6 ·°C-1 at 1200 ° C).
id USP_f865e1bb022e214250dbcb4624ad9bfa
oai_identifier_str oai:teses.usp.br:tde-26012021-092249
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Hindered densification as a porogenic mechanism for alumina-based thermal insulatorsDensificação dificultada como mecanismo porogênico para obtenção de isolantes térmicos à base de aluminaAluminaAluminaAluminum hydroxideCerâmica porosaDirect castHidróxido de alumínioIsolante térmicoMoldagem diretaPorous ceramicsSinterizaçãoSinterizationThermal insulatorPorous ceramics for application as high-temperature thermal insulators (600°C-1600°C) have been investigated as an alternative to the use of block and blankets of ceramic fibers. They present potential for such application because of the combination of low conductivity of porous structures (less than 5 W(m.K)-1 at 1200°C) with the refractoriness of ceramics. However, they do not resist densification as well as fibers after long periods at high temperatures. The presence of porosity reduces thermal conduction, because pores are filled with gases with low conductivity and also provoke scattering of photons, which are responsible for radiation process that occurs at high temperatures. To be effective it is also necessary that the pores be closed and small (< 4 mm diameter), in order to avoid the convection process. To maintain porosity and stability at high temperatures, it is necessary that the main sintering mechanism be surface diffusion, because it does not promote significant densification. This work is based on the principles of sintering and heat conduction to propose a novel porogenic mechanism. Thus, this work studied the compacting of pre-sintered aluminum hydroxide (Al(OH)3) because the particles obtained have internal pores, intrinsically resistant to densification due to their low surface area and curved shape. Three compaction methods were used: isostatic and uniaxial pressing and direct cast. The pressed samples resulted in lower values of total porosity at 1600°C (61.5% for uniaxial and 56.3% for isostatic), as they produced broken filaments during the application of pressure which increased the compaction of the particles and facilitated densification. The samples obtained by direct molding, on the other hand, did not compact well because the main diffusion mechanism was surface diffusion, maintaining porosity at high levels (74.4%). The physical properties obtained such as flexural strength (3.75 MPa) and rigity (4.57 GPa) are satisfactory for the application as thermal insulator (0.5-1 MPa and 2 GPa, respectively). In addition, the samples showed low thermal conductivity (0.49 W·m-1 ·°C-1 to 1400°C), low shrinkage after sintering (11,92% at 1600°C) and high resistance to thermal shock due to the low expansion coefficient obtained (5.7 10-6 ·°C-1 at 1200 ° C).Materiais porosos para isolantes térmicos de alta temperatura (600°C-1600°C) tem sido investigados como uma alternativa ao uso de blocos e cobertores de fibras cerâmicas. Eles apresentam potencial para tal aplicação por combinar a baixa condutividade das estruturas porosas (menos que 5 W(m.K)-1 a 1200°C) com a refratariedade das cerâmicas. No entanto, não resistem tão bem a densificação quanto as fibras depois de longos períodos a altas temperaturas. Sabe-se que a presença de porosidade reduz a condução, uma vez que os poros apresentam gases com baixa condutividade em seu interior e provocam o espalhamento de fótons os quais são responsáveis pelo processo de radiação. Para a porosidade ser efetiva é necessário que os poros sejam fechados e com tamanho reduzido (diâmetro < 4mm), a fim de evitar o processo de convecção. Para manter a porosidade e a estabilidade a altas temperaturas é necessário que o principal mecanismo de sinterização seja a difusão superficial, já que não promove densificação significativa. Este trabalho se baseia nos princípios de sinterização e de condução de calor para propor um novo mecanismo. Sendo assim, estudou a compactação de hidróxido de alumínio (Al(OH)3) pré-sinterizado a 1500°C , pois as partículas obtidas apresentam poros internos intrinsicamente resistentes a densificação por terem baixa área superficial e formato curvado. Foram utilizados três métodos de compactação: prensagens isostática e uniaxial e moldagem direta. As amostras prensadas resultaram em menores valores de porosidade total a 1600°C (61.5% para uniaxial e 56,3% para isostática), pois tiveram filamentos quebrados durante a aplicação de pressão o que aumentou a compactação das partículas e facilitou a densificação. Já as amostras obtidas por moldagem direta não compactaram bem por terem como mecanismo principal de sinterização a difusão superficial, mantendo a porosidade em níveis elevados (74.4%). As propriedades físicas obtidas tais como resistência a flexão (3.75 MPa) e rigidez (4.57 GPa) são satisfatórios para o que é requerido para a aplicação (0.5-1 MPa e 2GPa, respectivamente). Além disso, as amostras apresentaram baixa condutividade térmica (0.49 W·m-1 ·°C-1 to 1400°C), baixa retração linear (11,92% a 1600°C) e alta resistência ao choque térmico devido ao baixo coeficiente de expansão obtido ((5.7 10-6 ·°C-1 a 1200°C).Biblioteca Digitais de Teses e Dissertações da USPSalomão, RafaelEmílio, Ana Beatriz Verdi2020-11-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18158/tde-26012021-092249/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-06-18T22:26:02Zoai:teses.usp.br:tde-26012021-092249Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-18T22:26:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Hindered densification as a porogenic mechanism for alumina-based thermal insulators
Densificação dificultada como mecanismo porogênico para obtenção de isolantes térmicos à base de alumina
title Hindered densification as a porogenic mechanism for alumina-based thermal insulators
spellingShingle Hindered densification as a porogenic mechanism for alumina-based thermal insulators
Emílio, Ana Beatriz Verdi
Alumina
Alumina
Aluminum hydroxide
Cerâmica porosa
Direct cast
Hidróxido de alumínio
Isolante térmico
Moldagem direta
Porous ceramics
Sinterização
Sinterization
Thermal insulator
title_short Hindered densification as a porogenic mechanism for alumina-based thermal insulators
title_full Hindered densification as a porogenic mechanism for alumina-based thermal insulators
title_fullStr Hindered densification as a porogenic mechanism for alumina-based thermal insulators
title_full_unstemmed Hindered densification as a porogenic mechanism for alumina-based thermal insulators
title_sort Hindered densification as a porogenic mechanism for alumina-based thermal insulators
author Emílio, Ana Beatriz Verdi
author_facet Emílio, Ana Beatriz Verdi
author_role author
dc.contributor.none.fl_str_mv Salomão, Rafael
dc.contributor.author.fl_str_mv Emílio, Ana Beatriz Verdi
dc.subject.por.fl_str_mv Alumina
Alumina
Aluminum hydroxide
Cerâmica porosa
Direct cast
Hidróxido de alumínio
Isolante térmico
Moldagem direta
Porous ceramics
Sinterização
Sinterization
Thermal insulator
topic Alumina
Alumina
Aluminum hydroxide
Cerâmica porosa
Direct cast
Hidróxido de alumínio
Isolante térmico
Moldagem direta
Porous ceramics
Sinterização
Sinterization
Thermal insulator
description Porous ceramics for application as high-temperature thermal insulators (600°C-1600°C) have been investigated as an alternative to the use of block and blankets of ceramic fibers. They present potential for such application because of the combination of low conductivity of porous structures (less than 5 W(m.K)-1 at 1200°C) with the refractoriness of ceramics. However, they do not resist densification as well as fibers after long periods at high temperatures. The presence of porosity reduces thermal conduction, because pores are filled with gases with low conductivity and also provoke scattering of photons, which are responsible for radiation process that occurs at high temperatures. To be effective it is also necessary that the pores be closed and small (< 4 mm diameter), in order to avoid the convection process. To maintain porosity and stability at high temperatures, it is necessary that the main sintering mechanism be surface diffusion, because it does not promote significant densification. This work is based on the principles of sintering and heat conduction to propose a novel porogenic mechanism. Thus, this work studied the compacting of pre-sintered aluminum hydroxide (Al(OH)3) because the particles obtained have internal pores, intrinsically resistant to densification due to their low surface area and curved shape. Three compaction methods were used: isostatic and uniaxial pressing and direct cast. The pressed samples resulted in lower values of total porosity at 1600°C (61.5% for uniaxial and 56.3% for isostatic), as they produced broken filaments during the application of pressure which increased the compaction of the particles and facilitated densification. The samples obtained by direct molding, on the other hand, did not compact well because the main diffusion mechanism was surface diffusion, maintaining porosity at high levels (74.4%). The physical properties obtained such as flexural strength (3.75 MPa) and rigity (4.57 GPa) are satisfactory for the application as thermal insulator (0.5-1 MPa and 2 GPa, respectively). In addition, the samples showed low thermal conductivity (0.49 W·m-1 ·°C-1 to 1400°C), low shrinkage after sintering (11,92% at 1600°C) and high resistance to thermal shock due to the low expansion coefficient obtained (5.7 10-6 ·°C-1 at 1200 ° C).
publishDate 2020
dc.date.none.fl_str_mv 2020-11-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18158/tde-26012021-092249/
url https://www.teses.usp.br/teses/disponiveis/18/18158/tde-26012021-092249/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257349840961536