Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura

Detalhes bibliográficos
Autor(a) principal: Casati, João Paulo Brognoni
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-30012014-152011/
Resumo: A segmentação de pele em imagens é um importante processo para uma vasta gama de aplicações, como detecção e rastreamento de faces, reconhecimento de gestos, computação forense, entre outros. Um dos maiores problemas encontrados neste tipo de aplicação é a presença de objetos que possuem cor de pele nas imagens, mas não fazem parte de segmentos reais de pele, sendo muitas vezes erroneamente classificados como pele. A fim de reduzir a frequência destes falsos positivos, é apresentado neste trabalho um método de segmentação de pele humana em imagens faciais que possui duas diferentes etapas que reduzem a quantidade de falsos positivos do processo sem que se percam quantidades significantes de verdadeiros positivos. Estas duas etapas são chamadas de FPAR (False Positive Area Reduction) e aplicação de textura. A primeira visa remover segmentos não contínuos classificados como pele e a segunda aborda a aplicação de textura nas imagens, removendo áreas em que a textura não se assemelha à textura de pele humana. Para isto, foi desenvolvido o banco de imagens SFA (Skin of FERET and AR), constituído de imagens originais dos bancos de faces FERET e AR, seus respectivos ground truths de segmentação de pele e amostras de pele e não pele extraídas das imagens originais. O método apresentado neste trabalho apresenta resultados promissores atingindo até 46,9% de redução de falsos positivos sem que a acurácia aferida tenha redução significante (apenas 1,8%). Este trabalho tem como contribuições o método desenvolvido e o banco de imagens SFA que fica disponível online para download pela comunidade científica.
id USP_f8b8915b8e8003a5abd1b3745c4d32c7
oai_identifier_str oai:teses.usp.br:tde-30012014-152011
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Método para segmentação de pele humana em imagens faciais baseado em informações de cor e texturaA method for human skin segmentation in facial images based on color and texture featuresDigital image processingPattern recognitionProcessamento digital de imagensReconhecimento de padrõesSegmentação de peleSkin segmentationTexturaTextureA segmentação de pele em imagens é um importante processo para uma vasta gama de aplicações, como detecção e rastreamento de faces, reconhecimento de gestos, computação forense, entre outros. Um dos maiores problemas encontrados neste tipo de aplicação é a presença de objetos que possuem cor de pele nas imagens, mas não fazem parte de segmentos reais de pele, sendo muitas vezes erroneamente classificados como pele. A fim de reduzir a frequência destes falsos positivos, é apresentado neste trabalho um método de segmentação de pele humana em imagens faciais que possui duas diferentes etapas que reduzem a quantidade de falsos positivos do processo sem que se percam quantidades significantes de verdadeiros positivos. Estas duas etapas são chamadas de FPAR (False Positive Area Reduction) e aplicação de textura. A primeira visa remover segmentos não contínuos classificados como pele e a segunda aborda a aplicação de textura nas imagens, removendo áreas em que a textura não se assemelha à textura de pele humana. Para isto, foi desenvolvido o banco de imagens SFA (Skin of FERET and AR), constituído de imagens originais dos bancos de faces FERET e AR, seus respectivos ground truths de segmentação de pele e amostras de pele e não pele extraídas das imagens originais. O método apresentado neste trabalho apresenta resultados promissores atingindo até 46,9% de redução de falsos positivos sem que a acurácia aferida tenha redução significante (apenas 1,8%). Este trabalho tem como contribuições o método desenvolvido e o banco de imagens SFA que fica disponível online para download pela comunidade científica.Skin segmentation is an important process for many kinds of application like face detection, face tracking, gesture recognition, forensic computing and others. One of the main problems found in this kind of application is the presence of objects which have skin color but are not part of actual skin segments, being wrongly classified as skin. Aiming to reduce the frequency of these false positives, this work presents a method of human skin segmentation in facial images which has two different steps that reduces the false positives without losing significant areas of true positives. These two steps are called FPAR (False Positive Area Reduction) and texture application. The first one removes segments classified as skin which are not continuous and the second one is an analysis of the image texture, removing areas which the texture is not alike human skin texture. To achieve this, the SFA (Skin of FERET and AR) image database was developed, constituted of original images retrieved from AR and FERET face databases, their respective ground truths of skin segmentation and skin and non-skin samples retrieved from the original images. The method presented in this work shows promising results, reaching up to 46.9% of false positive reduction without significant reduction of the accuracy (1.8%). This work has as contributions the developed method and the SFA database, which is available for download for scientific community.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, Evandro Luis LinhariCasati, João Paulo Brognoni2013-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18152/tde-30012014-152011/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-30012014-152011Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
A method for human skin segmentation in facial images based on color and texture features
title Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
spellingShingle Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
Casati, João Paulo Brognoni
Digital image processing
Pattern recognition
Processamento digital de imagens
Reconhecimento de padrões
Segmentação de pele
Skin segmentation
Textura
Texture
title_short Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
title_full Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
title_fullStr Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
title_full_unstemmed Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
title_sort Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura
author Casati, João Paulo Brognoni
author_facet Casati, João Paulo Brognoni
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Evandro Luis Linhari
dc.contributor.author.fl_str_mv Casati, João Paulo Brognoni
dc.subject.por.fl_str_mv Digital image processing
Pattern recognition
Processamento digital de imagens
Reconhecimento de padrões
Segmentação de pele
Skin segmentation
Textura
Texture
topic Digital image processing
Pattern recognition
Processamento digital de imagens
Reconhecimento de padrões
Segmentação de pele
Skin segmentation
Textura
Texture
description A segmentação de pele em imagens é um importante processo para uma vasta gama de aplicações, como detecção e rastreamento de faces, reconhecimento de gestos, computação forense, entre outros. Um dos maiores problemas encontrados neste tipo de aplicação é a presença de objetos que possuem cor de pele nas imagens, mas não fazem parte de segmentos reais de pele, sendo muitas vezes erroneamente classificados como pele. A fim de reduzir a frequência destes falsos positivos, é apresentado neste trabalho um método de segmentação de pele humana em imagens faciais que possui duas diferentes etapas que reduzem a quantidade de falsos positivos do processo sem que se percam quantidades significantes de verdadeiros positivos. Estas duas etapas são chamadas de FPAR (False Positive Area Reduction) e aplicação de textura. A primeira visa remover segmentos não contínuos classificados como pele e a segunda aborda a aplicação de textura nas imagens, removendo áreas em que a textura não se assemelha à textura de pele humana. Para isto, foi desenvolvido o banco de imagens SFA (Skin of FERET and AR), constituído de imagens originais dos bancos de faces FERET e AR, seus respectivos ground truths de segmentação de pele e amostras de pele e não pele extraídas das imagens originais. O método apresentado neste trabalho apresenta resultados promissores atingindo até 46,9% de redução de falsos positivos sem que a acurácia aferida tenha redução significante (apenas 1,8%). Este trabalho tem como contribuições o método desenvolvido e o banco de imagens SFA que fica disponível online para download pela comunidade científica.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18152/tde-30012014-152011/
url http://www.teses.usp.br/teses/disponiveis/18/18152/tde-30012014-152011/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256543250087936