Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.

Detalhes bibliográficos
Autor(a) principal: Correa Saldarriaga, Pablo Alejandro
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3151/tde-28082018-075415/
Resumo: The main motivation of this doctoral thesis is to extend the current knowledge about the tribological behavior of a precipitation-hardenable (PH) austenitic stainless steel (SAE XEV-F or DIN 1.4882), used for manufacturing exhaust valves for internal combustion engines in passenger cars. For this purpose, dry sliding laboratory tests were carried out using this steel and other steels, mainly austenitic and martensitic, used as model materials for the comparative characterization of wear and friction. Experimental tests were conducted using an SRV®4 tribometer in a ball-on-disc configuration with reciprocating movement, in which the discs were the samples and the balls the counter-bodies. Four kinds of steels were tested: a) AISI 310, b) SAE XEV-F, c) AISI H13, and d) Nitrided SAE XEV-F. The ball was made of AISI 52100 bearing steel. The tests were conducted at room temperature and fixed conditions of time (sliding distance) (up to 73.2 m), load (100 N), frequency (10 Hz) and stroke (2mm). Wear was evaluated by means of mass loss in the disc and the ball, and post examination of the worn surfaces. Post examination was conducted using scanning electron microscopy (SEM), coherence correlation interferometry (CCI), and X-Ray diffraction (XRD). Wear debris resulting from tribological interaction were also investigated using SEM and XRD. Additionally, the friction coefficient was measured. High speed filming and interrupted tests were also performed at specific sliding distances. This work reports a severe-to-mild wear transition occurring during the first stage of tribological interaction (running-in) and its relation to the load distribution variation at the interface throughout the tribological tests. The wear transition was observed in different steel-on-steel tribosystems in ball-on-disc contact configuration and occurred due to the combined effects of two factors: a) the contact pressure reduction, due to the increase of nominal contact area caused by wear; and b) subsurface strain hardening (when relevant). The pressure/distance variation was determined experimentally and modeled empirically. Subsurface strain hardening was observable (and measurable) mainly the austenitic steels. Significant differences in wear (and friction) were observed between homogeneous (monophasic) steels and the heterogeneous (multiphasic) SAE XEV-F valve steel. Wear in the homogeneous steels presented an inverse correlation with hardness. Wear on the AISI 310 presented non-linear wear rates for a significant portion of the test. Wear on the SAE XEV-F valve steel was pronounced (even in the mild regime) due to a combined effect of two factors: a) formation of hard debris, which induced an abrasive component to wear by relative sliding, and b) subsurface NbC fracture, which markedly affected the material removal due to plastic deformation in the surrounding matrix. Wear of the nitrided SAE XEV-F steel was lower than that of the non-nitrided samples by nearly two orders of magnitude. The benefits of nitriding in the SAE XEV-F were two-fold: a) an increased surface hardness, and b) the prevention of NbC fracture and detachment, which results in even higher wear resistance.
id USP_f8b8f8a3c09b76d14cdb7cb029554247
oai_identifier_str oai:teses.usp.br:tde-28082018-075415
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.Transição de desgaste severo-moderado de diferentes tribosistemas de ação contra ação durante ensaios reciprocantes a seco-disco-esfera.Aço (Comportamento)Área nominal de contatoAtritoBall-on-discDesgasteDeslizamento a secoDry sliding wearDurezaEsfera-discoFrictionHardnessNominal contact areaRunning-inTribologiaWear transitionThe main motivation of this doctoral thesis is to extend the current knowledge about the tribological behavior of a precipitation-hardenable (PH) austenitic stainless steel (SAE XEV-F or DIN 1.4882), used for manufacturing exhaust valves for internal combustion engines in passenger cars. For this purpose, dry sliding laboratory tests were carried out using this steel and other steels, mainly austenitic and martensitic, used as model materials for the comparative characterization of wear and friction. Experimental tests were conducted using an SRV®4 tribometer in a ball-on-disc configuration with reciprocating movement, in which the discs were the samples and the balls the counter-bodies. Four kinds of steels were tested: a) AISI 310, b) SAE XEV-F, c) AISI H13, and d) Nitrided SAE XEV-F. The ball was made of AISI 52100 bearing steel. The tests were conducted at room temperature and fixed conditions of time (sliding distance) (up to 73.2 m), load (100 N), frequency (10 Hz) and stroke (2mm). Wear was evaluated by means of mass loss in the disc and the ball, and post examination of the worn surfaces. Post examination was conducted using scanning electron microscopy (SEM), coherence correlation interferometry (CCI), and X-Ray diffraction (XRD). Wear debris resulting from tribological interaction were also investigated using SEM and XRD. Additionally, the friction coefficient was measured. High speed filming and interrupted tests were also performed at specific sliding distances. This work reports a severe-to-mild wear transition occurring during the first stage of tribological interaction (running-in) and its relation to the load distribution variation at the interface throughout the tribological tests. The wear transition was observed in different steel-on-steel tribosystems in ball-on-disc contact configuration and occurred due to the combined effects of two factors: a) the contact pressure reduction, due to the increase of nominal contact area caused by wear; and b) subsurface strain hardening (when relevant). The pressure/distance variation was determined experimentally and modeled empirically. Subsurface strain hardening was observable (and measurable) mainly the austenitic steels. Significant differences in wear (and friction) were observed between homogeneous (monophasic) steels and the heterogeneous (multiphasic) SAE XEV-F valve steel. Wear in the homogeneous steels presented an inverse correlation with hardness. Wear on the AISI 310 presented non-linear wear rates for a significant portion of the test. Wear on the SAE XEV-F valve steel was pronounced (even in the mild regime) due to a combined effect of two factors: a) formation of hard debris, which induced an abrasive component to wear by relative sliding, and b) subsurface NbC fracture, which markedly affected the material removal due to plastic deformation in the surrounding matrix. Wear of the nitrided SAE XEV-F steel was lower than that of the non-nitrided samples by nearly two orders of magnitude. The benefits of nitriding in the SAE XEV-F were two-fold: a) an increased surface hardness, and b) the prevention of NbC fracture and detachment, which results in even higher wear resistance.A principal motivação desta tese é ampliar o conhecimento atual sobre o comportamento tribológico de um aço inoxidável austenítico endurecível por precipitação (PH), o SAE XEV-F (ou DIN 1.4882), utilizado para a fabricação de válvulas de exaustão de motores de combustão interna para carros de passageiros. Para este propósito, foram realizados ensaios laboratoriais de deslizamento a seco usando este aço e outros, principalmente aços austeníticos e martensíticos, usados como materiais modelo para a caracterização comparativa do desgaste e do atrito. Os ensaios experimentais foram conduzidos usando um tribômetro SRV®4 em uma configuração esfera-disco com movimento alternado, em que os discos foram as amostras e as esferas são os contracorpos. Foram ensaiados quatro tipos de aços: a) AISI 310, b) SAE XEV-F, c) AISI H13, e d) SAE XEV-F nitretado. A esfera era feita de aço para rolamento AISI 52100. Os ensaios foram realizados a temperatura ambiente e usando condições fixas de tempo (distância total percorrida até 73.2 m), carga normal (100 N), frequência (10 Hz) e amplitude da oscilação (2 mm). O desgaste foi avaliado por meio de perda de massa, tanto do disco quanto da esfera, e exame das superfícies desgastadas utilizando microscopia eletrônica de varredura (MEV), interferometria de correlação de coerência (ICC) e difração de raios-X (DRX). Os debris de desgaste resultantes da interação tribológica também foram investigados usando MEV e DRX. Adicionalmente, a evolução do coeficiente de atrito foi analisada. Também foram realizadas filmagens de alta velocidade e ensaios interrompidos em tempos de deslizamento específicos. Este trabalho reporta uma transição de desgaste severo para moderado que ocorre durante as a primeira fase da interação tribológica (running-in) e sua relação com a variação da carga na interface durante os ensaios tribológicos. A transição de desgaste foi observada em diferentes tribo-sistemas de aço-contra-aço na configuração esfera-plano e ocorreu principalmente por efeitos combinados de dois fatores: a) a redução da pressão de contato, devida ao aumento da área nominal causada pelo desgaste; e b) o encruamento subsuperficial (quando relevante). A variação pressão/distância foi determinada experimentalmente e modelada empiricamente. Encruamento por deformação subsuperficial foi observável (e medível) principalmente nos aços austeníticos. Foram observadas diferenças significativas no desgaste (e atrito) entre os aços homogêneos (monofásicos) e o aço de válvula SAE XEV-F, heterogêneo (multifásico). O desgaste nos aços homogêneos apresentou uma correlação inversa com a dureza. O desgaste no aço válvula SAE XEV-F foi pronunciado (mesmo no regime de desgaste moderado) devido a um efeito combinado de dois fatores: a) a formação de debris duros, o que induziu uma componente abrasiva ao desgaste por deslizamento relativo, e b) a fratura subsuperficial do NbC, o que afetou significativamente a remoção de material devida à deformação plástica da matriz. O desgaste do aço nitretado SAE XEV-F foi menor que o das amostras não tratadas em quase duas ordens de grandeza. Os benefícios da nitretação no aço válvula SAE XEV-F foram dois: a) o aumento da dureza da superfície, e b) a prevenção da fratura e desprendimento de NbC, o que resulta em uma resistência de desgaste ainda maior.Biblioteca Digitais de Teses e Dissertações da USPMachado, Izabel FernandaCorrea Saldarriaga, Pablo Alejandro 2018-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3151/tde-28082018-075415/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-28082018-075415Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
Transição de desgaste severo-moderado de diferentes tribosistemas de ação contra ação durante ensaios reciprocantes a seco-disco-esfera.
title Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
spellingShingle Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
Correa Saldarriaga, Pablo Alejandro
Aço (Comportamento)
Área nominal de contato
Atrito
Ball-on-disc
Desgaste
Deslizamento a seco
Dry sliding wear
Dureza
Esfera-disco
Friction
Hardness
Nominal contact area
Running-in
Tribologia
Wear transition
title_short Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
title_full Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
title_fullStr Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
title_full_unstemmed Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
title_sort Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests.
author Correa Saldarriaga, Pablo Alejandro
author_facet Correa Saldarriaga, Pablo Alejandro
author_role author
dc.contributor.none.fl_str_mv Machado, Izabel Fernanda
dc.contributor.author.fl_str_mv Correa Saldarriaga, Pablo Alejandro
dc.subject.por.fl_str_mv Aço (Comportamento)
Área nominal de contato
Atrito
Ball-on-disc
Desgaste
Deslizamento a seco
Dry sliding wear
Dureza
Esfera-disco
Friction
Hardness
Nominal contact area
Running-in
Tribologia
Wear transition
topic Aço (Comportamento)
Área nominal de contato
Atrito
Ball-on-disc
Desgaste
Deslizamento a seco
Dry sliding wear
Dureza
Esfera-disco
Friction
Hardness
Nominal contact area
Running-in
Tribologia
Wear transition
description The main motivation of this doctoral thesis is to extend the current knowledge about the tribological behavior of a precipitation-hardenable (PH) austenitic stainless steel (SAE XEV-F or DIN 1.4882), used for manufacturing exhaust valves for internal combustion engines in passenger cars. For this purpose, dry sliding laboratory tests were carried out using this steel and other steels, mainly austenitic and martensitic, used as model materials for the comparative characterization of wear and friction. Experimental tests were conducted using an SRV®4 tribometer in a ball-on-disc configuration with reciprocating movement, in which the discs were the samples and the balls the counter-bodies. Four kinds of steels were tested: a) AISI 310, b) SAE XEV-F, c) AISI H13, and d) Nitrided SAE XEV-F. The ball was made of AISI 52100 bearing steel. The tests were conducted at room temperature and fixed conditions of time (sliding distance) (up to 73.2 m), load (100 N), frequency (10 Hz) and stroke (2mm). Wear was evaluated by means of mass loss in the disc and the ball, and post examination of the worn surfaces. Post examination was conducted using scanning electron microscopy (SEM), coherence correlation interferometry (CCI), and X-Ray diffraction (XRD). Wear debris resulting from tribological interaction were also investigated using SEM and XRD. Additionally, the friction coefficient was measured. High speed filming and interrupted tests were also performed at specific sliding distances. This work reports a severe-to-mild wear transition occurring during the first stage of tribological interaction (running-in) and its relation to the load distribution variation at the interface throughout the tribological tests. The wear transition was observed in different steel-on-steel tribosystems in ball-on-disc contact configuration and occurred due to the combined effects of two factors: a) the contact pressure reduction, due to the increase of nominal contact area caused by wear; and b) subsurface strain hardening (when relevant). The pressure/distance variation was determined experimentally and modeled empirically. Subsurface strain hardening was observable (and measurable) mainly the austenitic steels. Significant differences in wear (and friction) were observed between homogeneous (monophasic) steels and the heterogeneous (multiphasic) SAE XEV-F valve steel. Wear in the homogeneous steels presented an inverse correlation with hardness. Wear on the AISI 310 presented non-linear wear rates for a significant portion of the test. Wear on the SAE XEV-F valve steel was pronounced (even in the mild regime) due to a combined effect of two factors: a) formation of hard debris, which induced an abrasive component to wear by relative sliding, and b) subsurface NbC fracture, which markedly affected the material removal due to plastic deformation in the surrounding matrix. Wear of the nitrided SAE XEV-F steel was lower than that of the non-nitrided samples by nearly two orders of magnitude. The benefits of nitriding in the SAE XEV-F were two-fold: a) an increased surface hardness, and b) the prevention of NbC fracture and detachment, which results in even higher wear resistance.
publishDate 2018
dc.date.none.fl_str_mv 2018-04-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3151/tde-28082018-075415/
url http://www.teses.usp.br/teses/disponiveis/3/3151/tde-28082018-075415/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256541106798592