Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11135/tde-02072018-093507/ |
Resumo: | The Pasteuria genus comprises gram-positive bacteria that are obligate parasites of arthropods and nematodes. Species of this genus are ubiquitous, being present in both aquatic and terrestrial environments all around the world. Pasteuria was first described as a genus at the end of the 19th century and has undergone considerable reclassification regarding its member species. Starting in the 1980s, a more meticulous classification effort regarding the identification of Pasteuria spp., and its parasitic habits began. These studies were strongly motivated by the ability of individuals of this genus to parasitize phytopathogenic nematodes of several plant species. Each species of the genus Pasteuria establishes a strict parasitic relationship with a specific genus of phytonematode. As an example of this interaction, Pasteuria thornei is a parasite restricted to the genus Pratylenchus, which comprises the nematodes popularly known as root-lesion-nematodes, a pest of several agronomically important crops. Considering the current relevance of studies involving the biological control of phytonematodes, in the present work three experiments were carried out, each one containing a replicate, totaling, therefore, six experiments. Two experiments were intended to verify the efficacy of P. thornei as a biological control agent (BCA) of Pratylenchus brachyurus in soybean. The remaining four experiments had a similar objective in the scope of the Pratylenchus zeae - maize pathosystem. Two experiments were carried out to verify the efficacy of P. thornei as a biological control agent for P. zeae in maize, and afterwards, two additional experiments were performed in order to verify the capacity of the BCA to reduce productivity losses in corn plants due to the parasitism of this nematode. For the soybean experiments, the following treatments were added to the seeds of the cultivar SYN1080: three different concentrations of P. thornei endospores per seed (5x106, 107 e 1,5x107), a commercial control group for comparison containing abamectin (0.58mg/seed) and a mixed treatment containing abamectin (0.58 mg / seed) and 107 P. thornei endospores. Untreated seeds were used as a control group. The treatments were sown in 500 cm3 plastic cups containing soil inoculated with 1000 nematodes (experiment 1) and 600 nematodes (experiment 2). Fresh root mass and nematodes extracted from the roots of each plant were used as parameters of evaluation, taking place 60 and 90 days after inoculation (DAI). Only the treatment with the highest concentration of P. thornei (1.5x107) reduced the final population of nematodes significantly, reaching 30-50% of reduction compared to the untreated seeds. However, treatments containing the commercial control abamectin were superior in reducing the final population of nematodes in all experiments evaluated. Regarding the maize efficacy experiments, CELERON hybrid seeds were treated as described: four concentrations of P. thornei endospores per seed (5x106, 107, 1,5x107, 2x107), a commercial control group for comparison containing abamectin (0.58 mg / seed) and a mixed treatment containing abamectin (0.58 mg / seed) and 107 P. thornei endospores. Untreated seeds were used as a control group. The treated maize seeds were planted in 500 cm3 plastic cups containing soil inoculated with 4000 and 1000 individuals for the efficacy experiments 1 and 2, respectively. Evaluations occurred at 60 and 90 DAI. For the productivity assays, the experiments 3 and 4 were carried out under a screened greenhouse, with experimental plots consisting of 9L pots filled with artificially infested soil. Seeds of the CELERON hybrid received the following treatments: abamectin (0.58mg / seed), P. thornei (107 endospores / seed) and mixed treatment containing both abamectin (0.58mg / seed) and P. thornei (107 endospores / seed). Two additional treatments containing untreated seeds served as controls, with and without the presence of Pratylenchus zeae. The evaluation measured several agronomic traits, such as dry weight of the aerial parts, fresh mass of roots at harvest and total weight of grains. In addition, the nematode population was measured in fresh roots at 45, 90 days and at the time of harvest. Efficacy trials showed that the highest concentrations of P. thornei (1.5x107 and 2x107) have a considerable potential of P. zeae control. The nematode population reduction was 54 and 47% in experiments 1 and 2, respectively, for the highest P. thornei concentration treatment. The commercial formulation containing abamectin showed a reduction of P. zeae population above 90% in both experiments. Regarding the maize productivity experiments, control potential of nematodes by P. thornei was similar to that observed in the efficacy study. The treatments containing abamectin had an effect on the mitigation of yield losses caused by P. zeae in both experiments. The mixed treatment (abamectin and P. thornei) and the one containing exclusively P. thornei presented a positive performance in both replicates. In none of the experiments synergistic or additive effects were observed between P. thornei and abamectin. With the data obtained in these experiments, the control potential of P. thornei on P. brachyurus and P. zeae in soybean and corn, respectively, is evident. Additionally, P. thornei and abamectin in the form of seed treatment, show potential in mitigating yield losses caused by P. zeae in maize. This highlights the importance of P. thornei as an additional tool for the management of root lesion nematodes in soybean and maize, and should encourage subsequent work. |
id |
USP_f9637cce197dd7dccfb83219697eab1b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02072018-093507 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maizePasteuria thornei, um novo tratamento de sementes para o controle biológico de nematoides das lesões radiculares em soja e milhoGlycine maxPratylenchus brachyurusPratylenchus zeaePratylenchusAbamectinBiological ControlControle biológicoThe Pasteuria genus comprises gram-positive bacteria that are obligate parasites of arthropods and nematodes. Species of this genus are ubiquitous, being present in both aquatic and terrestrial environments all around the world. Pasteuria was first described as a genus at the end of the 19th century and has undergone considerable reclassification regarding its member species. Starting in the 1980s, a more meticulous classification effort regarding the identification of Pasteuria spp., and its parasitic habits began. These studies were strongly motivated by the ability of individuals of this genus to parasitize phytopathogenic nematodes of several plant species. Each species of the genus Pasteuria establishes a strict parasitic relationship with a specific genus of phytonematode. As an example of this interaction, Pasteuria thornei is a parasite restricted to the genus Pratylenchus, which comprises the nematodes popularly known as root-lesion-nematodes, a pest of several agronomically important crops. Considering the current relevance of studies involving the biological control of phytonematodes, in the present work three experiments were carried out, each one containing a replicate, totaling, therefore, six experiments. Two experiments were intended to verify the efficacy of P. thornei as a biological control agent (BCA) of Pratylenchus brachyurus in soybean. The remaining four experiments had a similar objective in the scope of the Pratylenchus zeae - maize pathosystem. Two experiments were carried out to verify the efficacy of P. thornei as a biological control agent for P. zeae in maize, and afterwards, two additional experiments were performed in order to verify the capacity of the BCA to reduce productivity losses in corn plants due to the parasitism of this nematode. For the soybean experiments, the following treatments were added to the seeds of the cultivar SYN1080: three different concentrations of P. thornei endospores per seed (5x106, 107 e 1,5x107), a commercial control group for comparison containing abamectin (0.58mg/seed) and a mixed treatment containing abamectin (0.58 mg / seed) and 107 P. thornei endospores. Untreated seeds were used as a control group. The treatments were sown in 500 cm3 plastic cups containing soil inoculated with 1000 nematodes (experiment 1) and 600 nematodes (experiment 2). Fresh root mass and nematodes extracted from the roots of each plant were used as parameters of evaluation, taking place 60 and 90 days after inoculation (DAI). Only the treatment with the highest concentration of P. thornei (1.5x107) reduced the final population of nematodes significantly, reaching 30-50% of reduction compared to the untreated seeds. However, treatments containing the commercial control abamectin were superior in reducing the final population of nematodes in all experiments evaluated. Regarding the maize efficacy experiments, CELERON hybrid seeds were treated as described: four concentrations of P. thornei endospores per seed (5x106, 107, 1,5x107, 2x107), a commercial control group for comparison containing abamectin (0.58 mg / seed) and a mixed treatment containing abamectin (0.58 mg / seed) and 107 P. thornei endospores. Untreated seeds were used as a control group. The treated maize seeds were planted in 500 cm3 plastic cups containing soil inoculated with 4000 and 1000 individuals for the efficacy experiments 1 and 2, respectively. Evaluations occurred at 60 and 90 DAI. For the productivity assays, the experiments 3 and 4 were carried out under a screened greenhouse, with experimental plots consisting of 9L pots filled with artificially infested soil. Seeds of the CELERON hybrid received the following treatments: abamectin (0.58mg / seed), P. thornei (107 endospores / seed) and mixed treatment containing both abamectin (0.58mg / seed) and P. thornei (107 endospores / seed). Two additional treatments containing untreated seeds served as controls, with and without the presence of Pratylenchus zeae. The evaluation measured several agronomic traits, such as dry weight of the aerial parts, fresh mass of roots at harvest and total weight of grains. In addition, the nematode population was measured in fresh roots at 45, 90 days and at the time of harvest. Efficacy trials showed that the highest concentrations of P. thornei (1.5x107 and 2x107) have a considerable potential of P. zeae control. The nematode population reduction was 54 and 47% in experiments 1 and 2, respectively, for the highest P. thornei concentration treatment. The commercial formulation containing abamectin showed a reduction of P. zeae population above 90% in both experiments. Regarding the maize productivity experiments, control potential of nematodes by P. thornei was similar to that observed in the efficacy study. The treatments containing abamectin had an effect on the mitigation of yield losses caused by P. zeae in both experiments. The mixed treatment (abamectin and P. thornei) and the one containing exclusively P. thornei presented a positive performance in both replicates. In none of the experiments synergistic or additive effects were observed between P. thornei and abamectin. With the data obtained in these experiments, the control potential of P. thornei on P. brachyurus and P. zeae in soybean and corn, respectively, is evident. Additionally, P. thornei and abamectin in the form of seed treatment, show potential in mitigating yield losses caused by P. zeae in maize. This highlights the importance of P. thornei as an additional tool for the management of root lesion nematodes in soybean and maize, and should encourage subsequent work. O gênero Pasteuria compreende bactérias gram-positivas parasitas obrigatórias de artrópodes e nematoides. A distribuição das espécies deste gênero pelo mundo é ubíqua, podendo ser encontradas em ambientes aquáticos e terrestres. Este gênero foi descrito no final do século XIX e sofreu consideráveis reclassificações em relação às espécies nele compreendidos. A partir da década de 80, deu-se início a um esforço de classificação mais minucioso com relação à identificação de Pasteuria spp. e seus hábitos parasitários. Estes estudos foram motivados, principalmente, pela capacidade dos indivíduos deste gênero em parasitar nematoides fitoparasitas de diversas culturas. Cada espécie do gênero Pasteuria estabelece relações parasitárias com um gênero específico de fitonematoide. A exemplo desta interação, Pasteuria thornei é um parasita restrito ao gênero Pratylenchus, que compreende os nematoides causadores das lesões radiculares, daninhos a diversas culturas de importância agronômica. Considerando a relevância atual de estudos envolvendo o controle biológico de fitonematoides, no presente trabalho foram realizados três experimentos, cada um contendo uma réplica em época distinta, totalizando, portanto, seis experimentos. Dois experimentos tiveram por objetivo verificar a eficácia de P. thornei como agente de controle biológico (ACB) de Pratylenchus brachyurus na cultura da soja. E os demais quatro experimentos abordaram o patossistema Pratylenchus zeae-milho. Para esse objetivo, foram realizados dois experimentos com o intuito de verificar a eficácia de P. thornei como agente de controle biológico de P. zeae em milho, e outros dois experimentos para testar a capacidade do ACB em reduzir a perda de produtividade em plantas de milho decorrente do parasitismo do nematoide. Para os experimentos de soja, às sementes da cultivar SYN1080 foram adicionados os tratamentos como se segue: três concentrações de endósporos de P. thornei por semente (5x106, 107 e 1,5x107), um grupo de controle químico comercial para comparação contendo abamectina (0,58 mg / semente) e um tratamento misto contendo abamectina (0,58 mg / semente) e 107 endósporos de P. thornei. Sementes não tratadas foram utilizadas como testemunha. As sementes tratadas foram semeadas em copos de plástico de 500 cm3 contendo solo inoculado com 1000 nematoides (experimento 1) e 600 nematoides (experimento 2). A massa de raiz fresca e os nematoides extraídos das raízes de cada planta foram utilizados como critério de avaliação dos experimentos, a qual foi realizada aos 60 e 90 dias após a inoculação (DAI). Apenas o tratamento com a maior concentração de P. thornei (1,5x107) reduziu a população final de nematoides de maneira significativa atingindo 30-50% de redução, comparado àquele contendo sementes não tratadas. No entanto, os tratamentos que contém abamectina foram superiores na redução da população final de nematoides em todos os experimentos avaliados. Em relação aos experimentos de eficácia em milho, sementes do híbrido CELERON foram tratadas como explicitado: quatro concentrações de endósporos de P. thornei por semente (5x106, 107, 1,5x107 e 2x107), um grupo de controle comercial para comparação contendo abamectina (0,58 mg / semente) e um tratamento misto contendo abamectina (0,58 mg / semente) e 107 endósporos de P. thornei. As sementes tratadas de milho foram semeadas em copos de plástico de 500cm3 contendo solo inoculado com 4000 e 1000 indivíduos para os experimentos de eficácia 1 e 2, respectivamente. As avaliações ocorreram aos 60 e 90 DAI. Para os estudos de produtividade, foram realizados os experimentos 3 e 4 sob um telado com parcelas experimentais constituídas por vasos de 9L preenchidos de solo infestado artificialmente. Sementes do híbrido CELERON foram utilizadas contendo os seguintes tratamentos: abamectina (0,58mg / semente), P. thornei (107 endósporos/semente) e um tratamento misto contendo abamectina (0,58mg / semente) e P. thornei (107 endósporos/semente). Dois tratamentos adicionais contendo sementes não tratadas serviram de testemunhas, com e sem Pratylenchus zeae. A avaliação consistiu na medição de várias características agronômicas, como peso seco da parte aérea, massa fresca de raízes no momento da colheita e peso total dos grãos. Adicionalmente, foi mensurada a população de nematoides em raízes frescas aos 45, 90 dias e no momento da colheita. Os ensaios de eficácia mostraram que as concentrações mais elevadas de P. thornei (1,5x107 e 2x107) possuem um potencial mensurável de controle de P. zeae. A redução da população de nematoides foi de 54 e 47% nos experimentos 1 e 2, respectivamente. A formulação comercial de abamectina mostrou uma redução da população de nematoides superior a 90% em ambos os experimentos. No que diz respeito aos experimentos de produtividade de milho, o potencial de controle de nematoides por P. thornei foi semelhante ao observado no estudo de eficácia. O tratamento com abamectina teve efeito na redução das perdas de rendimento causadas por P. zeae em ambos os experimentos; assim como os tratamentos misto (abamectina e P. thornei) e aquele contendo apenas P. thornei que apresentaram desempenho positivo em ambas as repetições. Em nenhum dos experimentos foi observado efeito sinérgico ou aditivo entre P. thornei e abamectina. Com os dados obtidos nestes experimentos, fica evidente o potencial de controle de P. thornei sobre P. brachyurus e P. zeae em soja e milho, respectivamente. Ainda, tanto P. thornei quanto abamectina apresentam o potencial de mitigar as perdas de rendimento causadas por P. zeae em milho através do tratamento de sementes. Isso evidencia a importância de P. thornei como uma ferramenta adicional para o manejo desses nematoides, e deve encorajar trabalhos subsequentes.Biblioteca Digitais de Teses e Dissertações da USPInomoto, Mario MassayukiConfort, Pedro Marcus de Souza2018-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11135/tde-02072018-093507/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-19T20:50:39Zoai:teses.usp.br:tde-02072018-093507Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize Pasteuria thornei, um novo tratamento de sementes para o controle biológico de nematoides das lesões radiculares em soja e milho |
title |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize |
spellingShingle |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize Confort, Pedro Marcus de Souza Glycine max Pratylenchus brachyurus Pratylenchus zeae Pratylenchus Abamectin Biological Control Controle biológico |
title_short |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize |
title_full |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize |
title_fullStr |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize |
title_full_unstemmed |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize |
title_sort |
Pasteuria thornei, a novel biological seed treatment for root lesion nematode control in soybean and maize |
author |
Confort, Pedro Marcus de Souza |
author_facet |
Confort, Pedro Marcus de Souza |
author_role |
author |
dc.contributor.none.fl_str_mv |
Inomoto, Mario Massayuki |
dc.contributor.author.fl_str_mv |
Confort, Pedro Marcus de Souza |
dc.subject.por.fl_str_mv |
Glycine max Pratylenchus brachyurus Pratylenchus zeae Pratylenchus Abamectin Biological Control Controle biológico |
topic |
Glycine max Pratylenchus brachyurus Pratylenchus zeae Pratylenchus Abamectin Biological Control Controle biológico |
description |
The Pasteuria genus comprises gram-positive bacteria that are obligate parasites of arthropods and nematodes. Species of this genus are ubiquitous, being present in both aquatic and terrestrial environments all around the world. Pasteuria was first described as a genus at the end of the 19th century and has undergone considerable reclassification regarding its member species. Starting in the 1980s, a more meticulous classification effort regarding the identification of Pasteuria spp., and its parasitic habits began. These studies were strongly motivated by the ability of individuals of this genus to parasitize phytopathogenic nematodes of several plant species. Each species of the genus Pasteuria establishes a strict parasitic relationship with a specific genus of phytonematode. As an example of this interaction, Pasteuria thornei is a parasite restricted to the genus Pratylenchus, which comprises the nematodes popularly known as root-lesion-nematodes, a pest of several agronomically important crops. Considering the current relevance of studies involving the biological control of phytonematodes, in the present work three experiments were carried out, each one containing a replicate, totaling, therefore, six experiments. Two experiments were intended to verify the efficacy of P. thornei as a biological control agent (BCA) of Pratylenchus brachyurus in soybean. The remaining four experiments had a similar objective in the scope of the Pratylenchus zeae - maize pathosystem. Two experiments were carried out to verify the efficacy of P. thornei as a biological control agent for P. zeae in maize, and afterwards, two additional experiments were performed in order to verify the capacity of the BCA to reduce productivity losses in corn plants due to the parasitism of this nematode. For the soybean experiments, the following treatments were added to the seeds of the cultivar SYN1080: three different concentrations of P. thornei endospores per seed (5x106, 107 e 1,5x107), a commercial control group for comparison containing abamectin (0.58mg/seed) and a mixed treatment containing abamectin (0.58 mg / seed) and 107 P. thornei endospores. Untreated seeds were used as a control group. The treatments were sown in 500 cm3 plastic cups containing soil inoculated with 1000 nematodes (experiment 1) and 600 nematodes (experiment 2). Fresh root mass and nematodes extracted from the roots of each plant were used as parameters of evaluation, taking place 60 and 90 days after inoculation (DAI). Only the treatment with the highest concentration of P. thornei (1.5x107) reduced the final population of nematodes significantly, reaching 30-50% of reduction compared to the untreated seeds. However, treatments containing the commercial control abamectin were superior in reducing the final population of nematodes in all experiments evaluated. Regarding the maize efficacy experiments, CELERON hybrid seeds were treated as described: four concentrations of P. thornei endospores per seed (5x106, 107, 1,5x107, 2x107), a commercial control group for comparison containing abamectin (0.58 mg / seed) and a mixed treatment containing abamectin (0.58 mg / seed) and 107 P. thornei endospores. Untreated seeds were used as a control group. The treated maize seeds were planted in 500 cm3 plastic cups containing soil inoculated with 4000 and 1000 individuals for the efficacy experiments 1 and 2, respectively. Evaluations occurred at 60 and 90 DAI. For the productivity assays, the experiments 3 and 4 were carried out under a screened greenhouse, with experimental plots consisting of 9L pots filled with artificially infested soil. Seeds of the CELERON hybrid received the following treatments: abamectin (0.58mg / seed), P. thornei (107 endospores / seed) and mixed treatment containing both abamectin (0.58mg / seed) and P. thornei (107 endospores / seed). Two additional treatments containing untreated seeds served as controls, with and without the presence of Pratylenchus zeae. The evaluation measured several agronomic traits, such as dry weight of the aerial parts, fresh mass of roots at harvest and total weight of grains. In addition, the nematode population was measured in fresh roots at 45, 90 days and at the time of harvest. Efficacy trials showed that the highest concentrations of P. thornei (1.5x107 and 2x107) have a considerable potential of P. zeae control. The nematode population reduction was 54 and 47% in experiments 1 and 2, respectively, for the highest P. thornei concentration treatment. The commercial formulation containing abamectin showed a reduction of P. zeae population above 90% in both experiments. Regarding the maize productivity experiments, control potential of nematodes by P. thornei was similar to that observed in the efficacy study. The treatments containing abamectin had an effect on the mitigation of yield losses caused by P. zeae in both experiments. The mixed treatment (abamectin and P. thornei) and the one containing exclusively P. thornei presented a positive performance in both replicates. In none of the experiments synergistic or additive effects were observed between P. thornei and abamectin. With the data obtained in these experiments, the control potential of P. thornei on P. brachyurus and P. zeae in soybean and corn, respectively, is evident. Additionally, P. thornei and abamectin in the form of seed treatment, show potential in mitigating yield losses caused by P. zeae in maize. This highlights the importance of P. thornei as an additional tool for the management of root lesion nematodes in soybean and maize, and should encourage subsequent work. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11135/tde-02072018-093507/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11135/tde-02072018-093507/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090308664721408 |