Agent-Based Modeling for the Analysis of Complex Networks

Detalhes bibliográficos
Autor(a) principal: Farfan, Alex Josue Florez
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/
Resumo: Agent-based modeling is an approach within computational modeling that focuses on simulating the behavior and interactions of individual agents to understand emerging patterns in complex systems. This thesis discusses an approach developed in agent-based models in order to study and analyze complex networks. The inherent characteristics of agent-based models provide the appropriate context for exploring complex networks. By identifying, analyzing and understanding the emergent properties that arise from the dynamics and behavior of the agents we can obtain and recognize patterns within complex networks. Network characterization is an important task of pattern recognition. The modeling of a process over the space provided by networks generate patterns at different levels, individually in the agents, as well as globally in the entire model. In order to achieve the objective, an agent-based approach is proposed from which features are extracted that serve to characterize networks. It is important to highlight that in the literature agent-based models have not been used to categorize networks. The proposed model, called the Growth model, provides a novel consideration to characterize complex networks. The analysis performed on synthetic and real-world network datasets indicate that the classification results are similar with methods of the literature. The classification accuracy shows that in four datasets, Actinobacteria, Fungi, Kingdom, and Plant the results are better than the previous work in the literature, demonstrating the potential of this approach.
id USP_f9a1f2e27a7e32b06920a9b39dfbd9bf
oai_identifier_str oai:teses.usp.br:tde-03042024-113422
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Agent-Based Modeling for the Analysis of Complex NetworksModelagem Baseada em Agentes para Análise de Redes ComplexasAgent-based modelsAprendizado de máquinaComplex networksMachine learningModelagem baseada em agentesPattern recognitionReconhecimento de padrõesRedes complexasAgent-based modeling is an approach within computational modeling that focuses on simulating the behavior and interactions of individual agents to understand emerging patterns in complex systems. This thesis discusses an approach developed in agent-based models in order to study and analyze complex networks. The inherent characteristics of agent-based models provide the appropriate context for exploring complex networks. By identifying, analyzing and understanding the emergent properties that arise from the dynamics and behavior of the agents we can obtain and recognize patterns within complex networks. Network characterization is an important task of pattern recognition. The modeling of a process over the space provided by networks generate patterns at different levels, individually in the agents, as well as globally in the entire model. In order to achieve the objective, an agent-based approach is proposed from which features are extracted that serve to characterize networks. It is important to highlight that in the literature agent-based models have not been used to categorize networks. The proposed model, called the Growth model, provides a novel consideration to characterize complex networks. The analysis performed on synthetic and real-world network datasets indicate that the classification results are similar with methods of the literature. The classification accuracy shows that in four datasets, Actinobacteria, Fungi, Kingdom, and Plant the results are better than the previous work in the literature, demonstrating the potential of this approach.A modelagem baseada em agentes é uma abordagem dentro da modelagem computacional que se concentra na simulação do comportamento e das interações de agentes individuais para entender os padrões emergentes em sistemas complexos. Esta tese discute uma abordagem desenvolvida em modelagem baseada em agentes para estudar e analisar redes complexas. As características inerentes dos modelos baseados em agentes fornecem o contexto apropriado para explorar redes complexas. Ao identificar, analisar e compreender as propriedades emergentes que surgem da dinâmica e do comportamento dos agentes, podemos obter e reconhecer padrões dentro de redes complexas. A caracterização de rede é uma tarefa importante de reconhecimento de padrões. A modelagem de um processo sobre o espaço fornecido pelas redes gera padrões em diferentes níveis, individualmente nos agentes, bem como globalmente em todo o modelo. Para atingir o objetivo, é proposta uma abordagem baseada em agentes da qual são extraídas características que servem para categorizar as redes. É importante destacar que na literatura modelos baseados em agentes não têm sido utilizados para categorizar redes. O modelo proposto, denominado modelo de Crescimento, fornece uma nova consideração para caracterizar redes complexas. A análise realizada em conjuntos de dados de redes sintéticas e do mundo real indica que os resultados da classificação são semelhantes aos métodos da literatura. A acurácia da classificação mostra que em quatro conjuntos de dados, Actinobacteria, Fungi, Kingdom e Plant os resultados são melhores que os trabalhos anteriores na literatura, demonstrando o potencial desta abordagem.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezFarfan, Alex Josue Florez2023-11-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-04-03T14:41:02Zoai:teses.usp.br:tde-03042024-113422Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-04-03T14:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Agent-Based Modeling for the Analysis of Complex Networks
Modelagem Baseada em Agentes para Análise de Redes Complexas
title Agent-Based Modeling for the Analysis of Complex Networks
spellingShingle Agent-Based Modeling for the Analysis of Complex Networks
Farfan, Alex Josue Florez
Agent-based models
Aprendizado de máquina
Complex networks
Machine learning
Modelagem baseada em agentes
Pattern recognition
Reconhecimento de padrões
Redes complexas
title_short Agent-Based Modeling for the Analysis of Complex Networks
title_full Agent-Based Modeling for the Analysis of Complex Networks
title_fullStr Agent-Based Modeling for the Analysis of Complex Networks
title_full_unstemmed Agent-Based Modeling for the Analysis of Complex Networks
title_sort Agent-Based Modeling for the Analysis of Complex Networks
author Farfan, Alex Josue Florez
author_facet Farfan, Alex Josue Florez
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Farfan, Alex Josue Florez
dc.subject.por.fl_str_mv Agent-based models
Aprendizado de máquina
Complex networks
Machine learning
Modelagem baseada em agentes
Pattern recognition
Reconhecimento de padrões
Redes complexas
topic Agent-based models
Aprendizado de máquina
Complex networks
Machine learning
Modelagem baseada em agentes
Pattern recognition
Reconhecimento de padrões
Redes complexas
description Agent-based modeling is an approach within computational modeling that focuses on simulating the behavior and interactions of individual agents to understand emerging patterns in complex systems. This thesis discusses an approach developed in agent-based models in order to study and analyze complex networks. The inherent characteristics of agent-based models provide the appropriate context for exploring complex networks. By identifying, analyzing and understanding the emergent properties that arise from the dynamics and behavior of the agents we can obtain and recognize patterns within complex networks. Network characterization is an important task of pattern recognition. The modeling of a process over the space provided by networks generate patterns at different levels, individually in the agents, as well as globally in the entire model. In order to achieve the objective, an agent-based approach is proposed from which features are extracted that serve to characterize networks. It is important to highlight that in the literature agent-based models have not been used to categorize networks. The proposed model, called the Growth model, provides a novel consideration to characterize complex networks. The analysis performed on synthetic and real-world network datasets indicate that the classification results are similar with methods of the literature. The classification accuracy shows that in four datasets, Actinobacteria, Fungi, Kingdom, and Plant the results are better than the previous work in the literature, demonstrating the potential of this approach.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256632774361088