Agent-Based Modeling for the Analysis of Complex Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/ |
Resumo: | Agent-based modeling is an approach within computational modeling that focuses on simulating the behavior and interactions of individual agents to understand emerging patterns in complex systems. This thesis discusses an approach developed in agent-based models in order to study and analyze complex networks. The inherent characteristics of agent-based models provide the appropriate context for exploring complex networks. By identifying, analyzing and understanding the emergent properties that arise from the dynamics and behavior of the agents we can obtain and recognize patterns within complex networks. Network characterization is an important task of pattern recognition. The modeling of a process over the space provided by networks generate patterns at different levels, individually in the agents, as well as globally in the entire model. In order to achieve the objective, an agent-based approach is proposed from which features are extracted that serve to characterize networks. It is important to highlight that in the literature agent-based models have not been used to categorize networks. The proposed model, called the Growth model, provides a novel consideration to characterize complex networks. The analysis performed on synthetic and real-world network datasets indicate that the classification results are similar with methods of the literature. The classification accuracy shows that in four datasets, Actinobacteria, Fungi, Kingdom, and Plant the results are better than the previous work in the literature, demonstrating the potential of this approach. |
id |
USP_f9a1f2e27a7e32b06920a9b39dfbd9bf |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03042024-113422 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Agent-Based Modeling for the Analysis of Complex NetworksModelagem Baseada em Agentes para Análise de Redes ComplexasAgent-based modelsAprendizado de máquinaComplex networksMachine learningModelagem baseada em agentesPattern recognitionReconhecimento de padrõesRedes complexasAgent-based modeling is an approach within computational modeling that focuses on simulating the behavior and interactions of individual agents to understand emerging patterns in complex systems. This thesis discusses an approach developed in agent-based models in order to study and analyze complex networks. The inherent characteristics of agent-based models provide the appropriate context for exploring complex networks. By identifying, analyzing and understanding the emergent properties that arise from the dynamics and behavior of the agents we can obtain and recognize patterns within complex networks. Network characterization is an important task of pattern recognition. The modeling of a process over the space provided by networks generate patterns at different levels, individually in the agents, as well as globally in the entire model. In order to achieve the objective, an agent-based approach is proposed from which features are extracted that serve to characterize networks. It is important to highlight that in the literature agent-based models have not been used to categorize networks. The proposed model, called the Growth model, provides a novel consideration to characterize complex networks. The analysis performed on synthetic and real-world network datasets indicate that the classification results are similar with methods of the literature. The classification accuracy shows that in four datasets, Actinobacteria, Fungi, Kingdom, and Plant the results are better than the previous work in the literature, demonstrating the potential of this approach.A modelagem baseada em agentes é uma abordagem dentro da modelagem computacional que se concentra na simulação do comportamento e das interações de agentes individuais para entender os padrões emergentes em sistemas complexos. Esta tese discute uma abordagem desenvolvida em modelagem baseada em agentes para estudar e analisar redes complexas. As características inerentes dos modelos baseados em agentes fornecem o contexto apropriado para explorar redes complexas. Ao identificar, analisar e compreender as propriedades emergentes que surgem da dinâmica e do comportamento dos agentes, podemos obter e reconhecer padrões dentro de redes complexas. A caracterização de rede é uma tarefa importante de reconhecimento de padrões. A modelagem de um processo sobre o espaço fornecido pelas redes gera padrões em diferentes níveis, individualmente nos agentes, bem como globalmente em todo o modelo. Para atingir o objetivo, é proposta uma abordagem baseada em agentes da qual são extraídas características que servem para categorizar as redes. É importante destacar que na literatura modelos baseados em agentes não têm sido utilizados para categorizar redes. O modelo proposto, denominado modelo de Crescimento, fornece uma nova consideração para caracterizar redes complexas. A análise realizada em conjuntos de dados de redes sintéticas e do mundo real indica que os resultados da classificação são semelhantes aos métodos da literatura. A acurácia da classificação mostra que em quatro conjuntos de dados, Actinobacteria, Fungi, Kingdom e Plant os resultados são melhores que os trabalhos anteriores na literatura, demonstrando o potencial desta abordagem.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezFarfan, Alex Josue Florez2023-11-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-04-03T14:41:02Zoai:teses.usp.br:tde-03042024-113422Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-04-03T14:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Agent-Based Modeling for the Analysis of Complex Networks Modelagem Baseada em Agentes para Análise de Redes Complexas |
title |
Agent-Based Modeling for the Analysis of Complex Networks |
spellingShingle |
Agent-Based Modeling for the Analysis of Complex Networks Farfan, Alex Josue Florez Agent-based models Aprendizado de máquina Complex networks Machine learning Modelagem baseada em agentes Pattern recognition Reconhecimento de padrões Redes complexas |
title_short |
Agent-Based Modeling for the Analysis of Complex Networks |
title_full |
Agent-Based Modeling for the Analysis of Complex Networks |
title_fullStr |
Agent-Based Modeling for the Analysis of Complex Networks |
title_full_unstemmed |
Agent-Based Modeling for the Analysis of Complex Networks |
title_sort |
Agent-Based Modeling for the Analysis of Complex Networks |
author |
Farfan, Alex Josue Florez |
author_facet |
Farfan, Alex Josue Florez |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bruno, Odemir Martinez |
dc.contributor.author.fl_str_mv |
Farfan, Alex Josue Florez |
dc.subject.por.fl_str_mv |
Agent-based models Aprendizado de máquina Complex networks Machine learning Modelagem baseada em agentes Pattern recognition Reconhecimento de padrões Redes complexas |
topic |
Agent-based models Aprendizado de máquina Complex networks Machine learning Modelagem baseada em agentes Pattern recognition Reconhecimento de padrões Redes complexas |
description |
Agent-based modeling is an approach within computational modeling that focuses on simulating the behavior and interactions of individual agents to understand emerging patterns in complex systems. This thesis discusses an approach developed in agent-based models in order to study and analyze complex networks. The inherent characteristics of agent-based models provide the appropriate context for exploring complex networks. By identifying, analyzing and understanding the emergent properties that arise from the dynamics and behavior of the agents we can obtain and recognize patterns within complex networks. Network characterization is an important task of pattern recognition. The modeling of a process over the space provided by networks generate patterns at different levels, individually in the agents, as well as globally in the entire model. In order to achieve the objective, an agent-based approach is proposed from which features are extracted that serve to characterize networks. It is important to highlight that in the literature agent-based models have not been used to categorize networks. The proposed model, called the Growth model, provides a novel consideration to characterize complex networks. The analysis performed on synthetic and real-world network datasets indicate that the classification results are similar with methods of the literature. The classification accuracy shows that in four datasets, Actinobacteria, Fungi, Kingdom, and Plant the results are better than the previous work in the literature, demonstrating the potential of this approach. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03042024-113422/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256632774361088 |