Study of particle acceleration by magnetic reconnection in relativistic jets

Detalhes bibliográficos
Autor(a) principal: Torrejón, Tania Elizabeth Medina
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-23032021-160746/
Resumo: The ubiquitous relativistic jet phenomena associated with black holes play a major role in high and very-high-energy (VHE) astrophysics. In particular, observations indicate that blazars (active galactic nuclei with highly beamed relativistic jets pointing to the line of sight) show highly variable VHE emission, implying extremely compact emission regions. The real mechanism able to explain the particle acceleration process responsible for this emission is still debated, but magnetic reconnection has been lately discussed as a strong potential candidate. In this thesis, by means of three-dimensional special relativistic magnetohydrodinamical (3D-SRMHD) numerical simulations, we investigate the acceleration of test particles injected in a magnetized relativistic jet subject to current driven kink instability (CDKI), which drives turbulence and fast magnetic reconnection. We find that once the turbulence is fully developed in the jet, achieving a nearly stationary state, the amplitude of the excited wiggles along the jet spine also attains a maximum growth, causing the disruption of the magnetic field lines and the formation of several sites of fast reconnection. This occurs after the CDKI achieves a plateau in its non-linear growth. We performed a systematic search of magnetic reconnection sites in the evolved jet and obtained obtained average magnetic reconnection rates of ~ 0.05 (in units of the Alfvén speed) which are comparable to the predictions of the theory of turbulence-induced fast reconnection. Hundreds to thousands of protons injected in the nearly stationary snapshots of the jet, experience an exponential acceleration up to a maximum energy. For a background magnetic field of B ~ 0.1 G, this saturation energy is ~ 10^16 eV, while for B ~ 10 G é ~10^18 eV. The Larmor radius of the particles attaining the saturation energy corresponds to the size of the acceleration region, being of the order of the diameter of the perturbed jet. During this exponential acceleration, the velocity component of the particles that is predominantly accelerated is the parallel one to the local magnetic field. This regime of particle acceleration is very similar in all these evolved snapshots and lasts for several hundred hours until the saturation energy. The simulations reveal a clear association of the accelerated particles with the regions of fast reconnection, indicating its dominant role on the acceleration process. Beyond those saturation values, the particles suffer further acceleration to energies up to 100 times larger, but at a slower rate due to drift in the varying magnetic field. In the early stages of the development of the non-linear growth of CDKI in the jet, when there are still no sites of fast reconnection, injected particles are also efficiently accelerated, but by magnetic curvature drift in the wiggling jet spine. However, in order to particles to be accelerated by this process, they have to be injected with an initial energy much larger than that required for particles to accelerate in reconnection sites. Finally, we have also obtained from the simulations an acceleration time due to reconnection with a weak dependence on the particles energy E, tA E^ 0.1. The energy spectrum of the accelerated particles develops a high energy tail with a power law index p~ -1.2 in the beginning of the acceleration, in agreement with earlier works. Our results provide an appropriate multi-dimensional framework for exploring this process in real systems and explain their complex emission patterns, specially in the very high energy bands and the associated neutrino emission recently detected in some blazars.
id USP_facac7312883d65270d51a44b21e33ff
oai_identifier_str oai:teses.usp.br:tde-23032021-160746
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Study of particle acceleration by magnetic reconnection in relativistic jetsEstudo de aceleração de partículas por reconexão magnética em jatos relativísticosacceleration of particlesaceleração de partículas reconexão magnética - magnetohydrodinâmicas (MHD) - método: numéricojatos (Astonomia).magnetic reconnectionmagnetohydrodynamics (MHD)methods: numericalThe ubiquitous relativistic jet phenomena associated with black holes play a major role in high and very-high-energy (VHE) astrophysics. In particular, observations indicate that blazars (active galactic nuclei with highly beamed relativistic jets pointing to the line of sight) show highly variable VHE emission, implying extremely compact emission regions. The real mechanism able to explain the particle acceleration process responsible for this emission is still debated, but magnetic reconnection has been lately discussed as a strong potential candidate. In this thesis, by means of three-dimensional special relativistic magnetohydrodinamical (3D-SRMHD) numerical simulations, we investigate the acceleration of test particles injected in a magnetized relativistic jet subject to current driven kink instability (CDKI), which drives turbulence and fast magnetic reconnection. We find that once the turbulence is fully developed in the jet, achieving a nearly stationary state, the amplitude of the excited wiggles along the jet spine also attains a maximum growth, causing the disruption of the magnetic field lines and the formation of several sites of fast reconnection. This occurs after the CDKI achieves a plateau in its non-linear growth. We performed a systematic search of magnetic reconnection sites in the evolved jet and obtained obtained average magnetic reconnection rates of ~ 0.05 (in units of the Alfvén speed) which are comparable to the predictions of the theory of turbulence-induced fast reconnection. Hundreds to thousands of protons injected in the nearly stationary snapshots of the jet, experience an exponential acceleration up to a maximum energy. For a background magnetic field of B ~ 0.1 G, this saturation energy is ~ 10^16 eV, while for B ~ 10 G é ~10^18 eV. The Larmor radius of the particles attaining the saturation energy corresponds to the size of the acceleration region, being of the order of the diameter of the perturbed jet. During this exponential acceleration, the velocity component of the particles that is predominantly accelerated is the parallel one to the local magnetic field. This regime of particle acceleration is very similar in all these evolved snapshots and lasts for several hundred hours until the saturation energy. The simulations reveal a clear association of the accelerated particles with the regions of fast reconnection, indicating its dominant role on the acceleration process. Beyond those saturation values, the particles suffer further acceleration to energies up to 100 times larger, but at a slower rate due to drift in the varying magnetic field. In the early stages of the development of the non-linear growth of CDKI in the jet, when there are still no sites of fast reconnection, injected particles are also efficiently accelerated, but by magnetic curvature drift in the wiggling jet spine. However, in order to particles to be accelerated by this process, they have to be injected with an initial energy much larger than that required for particles to accelerate in reconnection sites. Finally, we have also obtained from the simulations an acceleration time due to reconnection with a weak dependence on the particles energy E, tA E^ 0.1. The energy spectrum of the accelerated particles develops a high energy tail with a power law index p~ -1.2 in the beginning of the acceleration, in agreement with earlier works. Our results provide an appropriate multi-dimensional framework for exploring this process in real systems and explain their complex emission patterns, specially in the very high energy bands and the associated neutrino emission recently detected in some blazars.Os fenômeno onipresente de jatos relativísticos associados a buracos negros desempenha um papel importante na astrofísica de altas e muito altas energias (em inglês, VHE). Em particular, as observações indicam que os blazares (núcleos galácticos ativos com jatos relativísticos de feixe colimado apontando para a linha de visada) mostram emissão VHE altamente variável, implicando em regiões de emissão extremamente compactas. Nesta tese, realizando simulações numéricas tridimensionais relativíticas magnetohydrodinâmicas com relatividade especial (3D-SRMHD), investigamos a aceleração de partículas teste injetadas em um jato magentizado relativístico sujeito à instabilidade de torção desencadeada por correntes (em inglês, current driven kink instability, CDKI), a qual excita turbulência e reconexão magnética rápida. Verificamos que uma vez que a turbulência está totalmente desenvolvida no jato, atingindo um estado quase estacionário, a amplitude das torções excitadas ao longo da coluna do jato também atinge um crescimento máximo, causando o rompimento das linhas do campo magnético e a formação de vários locais de reconexão rápida. Isso ocorre depois que a CDKI atinge um platô em seu crescimento não linear. Realizamos uma identificação sistemática dos sítios de reconexão magnética no jato e obtivemos taxas médias de reconexão magnética de ~ 0.05 (em unidades da velocidade de Alfvén) que são comparáveis às previsões da teoria da reconexão rápida induzida por turbulência. Centenas a milhares de prótons, injetados em passos temporais no qual o jato está aproximadamente estacionário, experimentam uma aceleração exponencial até uma energia máxima. Para um campo magnético no jato de B ~ 0.1 G, esta energia de saturação é ~ 10^16 eV, enquanto para B ~ 10 G é ~10^18 eV. O raio de Larmor das partículas que atingem a energia de saturação corresponde ao tamanho da região de aceleração, sendo da ordem do diâmetro do jato perturbado. Durante essa aceleração exponencial, a componente de velocidade das partículas que é predominantemente acelerada é a paralela ao campo magnético local. Este regime de aceleração de partículas é muito semelhante em todos os intervalos mais evoluídos do jato e dura por várias centenas de horas até a energia de saturação. As simulações revelam uma clara associação das partículas aceleradas com as regiões de reconexão rápida, indicando seu papel dominante no processo de aceleração. Além desses valores de saturação, as partículas sofrem aceleração adicional para energias até 100 vezes maiores, mas a uma taxa mais lenta, devido a drift no campo magnético variável. Nos estágios iniciais do desenvolvimento do crescimento não linear da CDKI no jato, quando ainda não há locais de reconexão magnética rápida, as partículas injetadas também são eficientemente aceleradas, mas por drift devido à curvatura do campo magnético na espinha destorcida do jato. No entanto, para que as partículas sejam aceleradas por esse processo, elas precisam ser injetadas com uma energia inicial muito maior do que a necessária para que as partículas acelerem nos locais de reconexão magnética. Finalmente, também obtivemos das simulações um tempo de aceleração devido à reconexão com uma fraca dependência da energia das partículas E, tA E^0.1. O espectro de energia das partículas aceleradas desenvolve uma cauda de alta energia com índice de lei de potência p~ -1.2, no início da aceleração, o qual é compatível com trabalhos anteriores. Nossos resultados fornecem uma estrutura multidimensional apropriada para explorar aceleração em sistemas reais e explicar padrões de emissão complexos nos mesmos, especialmente nas bandas de energia muito altas e também a emissão de neutrinos associada, recentemente detectados em alguns blazares.Biblioteca Digitais de Teses e Dissertações da USPPino, Elisabete Maria de Gouveia DalTorrejón, Tania Elizabeth Medina2021-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-23032021-160746/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-04-07T01:52:04Zoai:teses.usp.br:tde-23032021-160746Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-07T01:52:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Study of particle acceleration by magnetic reconnection in relativistic jets
Estudo de aceleração de partículas por reconexão magnética em jatos relativísticos
title Study of particle acceleration by magnetic reconnection in relativistic jets
spellingShingle Study of particle acceleration by magnetic reconnection in relativistic jets
Torrejón, Tania Elizabeth Medina
acceleration of particles
aceleração de partículas reconexão magnética - magnetohydrodinâmicas (MHD) - método: numérico
jatos (Astonomia).
magnetic reconnection
magnetohydrodynamics (MHD)
methods: numerical
title_short Study of particle acceleration by magnetic reconnection in relativistic jets
title_full Study of particle acceleration by magnetic reconnection in relativistic jets
title_fullStr Study of particle acceleration by magnetic reconnection in relativistic jets
title_full_unstemmed Study of particle acceleration by magnetic reconnection in relativistic jets
title_sort Study of particle acceleration by magnetic reconnection in relativistic jets
author Torrejón, Tania Elizabeth Medina
author_facet Torrejón, Tania Elizabeth Medina
author_role author
dc.contributor.none.fl_str_mv Pino, Elisabete Maria de Gouveia Dal
dc.contributor.author.fl_str_mv Torrejón, Tania Elizabeth Medina
dc.subject.por.fl_str_mv acceleration of particles
aceleração de partículas reconexão magnética - magnetohydrodinâmicas (MHD) - método: numérico
jatos (Astonomia).
magnetic reconnection
magnetohydrodynamics (MHD)
methods: numerical
topic acceleration of particles
aceleração de partículas reconexão magnética - magnetohydrodinâmicas (MHD) - método: numérico
jatos (Astonomia).
magnetic reconnection
magnetohydrodynamics (MHD)
methods: numerical
description The ubiquitous relativistic jet phenomena associated with black holes play a major role in high and very-high-energy (VHE) astrophysics. In particular, observations indicate that blazars (active galactic nuclei with highly beamed relativistic jets pointing to the line of sight) show highly variable VHE emission, implying extremely compact emission regions. The real mechanism able to explain the particle acceleration process responsible for this emission is still debated, but magnetic reconnection has been lately discussed as a strong potential candidate. In this thesis, by means of three-dimensional special relativistic magnetohydrodinamical (3D-SRMHD) numerical simulations, we investigate the acceleration of test particles injected in a magnetized relativistic jet subject to current driven kink instability (CDKI), which drives turbulence and fast magnetic reconnection. We find that once the turbulence is fully developed in the jet, achieving a nearly stationary state, the amplitude of the excited wiggles along the jet spine also attains a maximum growth, causing the disruption of the magnetic field lines and the formation of several sites of fast reconnection. This occurs after the CDKI achieves a plateau in its non-linear growth. We performed a systematic search of magnetic reconnection sites in the evolved jet and obtained obtained average magnetic reconnection rates of ~ 0.05 (in units of the Alfvén speed) which are comparable to the predictions of the theory of turbulence-induced fast reconnection. Hundreds to thousands of protons injected in the nearly stationary snapshots of the jet, experience an exponential acceleration up to a maximum energy. For a background magnetic field of B ~ 0.1 G, this saturation energy is ~ 10^16 eV, while for B ~ 10 G é ~10^18 eV. The Larmor radius of the particles attaining the saturation energy corresponds to the size of the acceleration region, being of the order of the diameter of the perturbed jet. During this exponential acceleration, the velocity component of the particles that is predominantly accelerated is the parallel one to the local magnetic field. This regime of particle acceleration is very similar in all these evolved snapshots and lasts for several hundred hours until the saturation energy. The simulations reveal a clear association of the accelerated particles with the regions of fast reconnection, indicating its dominant role on the acceleration process. Beyond those saturation values, the particles suffer further acceleration to energies up to 100 times larger, but at a slower rate due to drift in the varying magnetic field. In the early stages of the development of the non-linear growth of CDKI in the jet, when there are still no sites of fast reconnection, injected particles are also efficiently accelerated, but by magnetic curvature drift in the wiggling jet spine. However, in order to particles to be accelerated by this process, they have to be injected with an initial energy much larger than that required for particles to accelerate in reconnection sites. Finally, we have also obtained from the simulations an acceleration time due to reconnection with a weak dependence on the particles energy E, tA E^ 0.1. The energy spectrum of the accelerated particles develops a high energy tail with a power law index p~ -1.2 in the beginning of the acceleration, in agreement with earlier works. Our results provide an appropriate multi-dimensional framework for exploring this process in real systems and explain their complex emission patterns, specially in the very high energy bands and the associated neutrino emission recently detected in some blazars.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-23032021-160746/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-23032021-160746/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257296384557056