Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties

Detalhes bibliográficos
Autor(a) principal: Bueno, José Nuno Almeida Dias
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/
Resumo: The linear quadratic regulation problem for discrete-time systems has been subjected to research since its first appearance in the literature in the 1960s. Thereafter, different formulations and applications came to light to accommodate a wide range of theoretical and practical cases, such as systems undergoing the effects of unknown parametric variations. More specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time linear and Markov jump linear systems subject to polytopic uncertainties. We define the problems regarding min-max optimization based on regularized least squares with uncertain data and penalty functions. We consider the cases where uncertainties affect the model matrices and transition probabilities and Markov jumps systems with unobserved chains. For each scenario, we designed a quadratic cost function to take all polytopic vertices into account in a unified manner while keeping the optimization problems\' convexity. The recursive solutions yield robust state feedback gains with a relatively lower computational burden if compared, for instance, with linear matrix inequalities approaches. By expanding the matrix structures of the solutions, we achieved equivalent reduced forms that are more adequate for convergence and stability analyses based on algebraic Riccati equations. Then, provided that some detectability and stabilizability conditions hold, the feedback gains ensure the stability of the associated closed-loop systems. The proposed method requires no further parameter tuning during operation, which is desirable in embedded applications and in systems with many vertices and Markov modes. Furthermore, we provide numerical and application examples to validate our results
id USP_fb37ad9e60ef92c50c8007e980434058
oai_identifier_str oai:teses.usp.br:tde-02082023-084309
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertaintiesMétodos recursivos robustos para sistemas discretos sujeitos a incertezas politópicasalgebraic Riccati equationscontrole robustodiscrete-time linear systemsequações algébricas de Riccatiincertezas politópicaslinear quadratic regulatorMarkov jump systemsoptimizationotimizaçãopolytopic uncertaintiesregulador quadrático linearrobust controlsistemas lineares discretossistemas sujeitos a saltos MarkovianosThe linear quadratic regulation problem for discrete-time systems has been subjected to research since its first appearance in the literature in the 1960s. Thereafter, different formulations and applications came to light to accommodate a wide range of theoretical and practical cases, such as systems undergoing the effects of unknown parametric variations. More specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time linear and Markov jump linear systems subject to polytopic uncertainties. We define the problems regarding min-max optimization based on regularized least squares with uncertain data and penalty functions. We consider the cases where uncertainties affect the model matrices and transition probabilities and Markov jumps systems with unobserved chains. For each scenario, we designed a quadratic cost function to take all polytopic vertices into account in a unified manner while keeping the optimization problems\' convexity. The recursive solutions yield robust state feedback gains with a relatively lower computational burden if compared, for instance, with linear matrix inequalities approaches. By expanding the matrix structures of the solutions, we achieved equivalent reduced forms that are more adequate for convergence and stability analyses based on algebraic Riccati equations. Then, provided that some detectability and stabilizability conditions hold, the feedback gains ensure the stability of the associated closed-loop systems. The proposed method requires no further parameter tuning during operation, which is desirable in embedded applications and in systems with many vertices and Markov modes. Furthermore, we provide numerical and application examples to validate our resultsO problema de regulação quadrática linear para sistemas discretos tem sido assunto de pesquisa desde suas primeiras aparições na literatura nos anos 1960. Desde então, diferentes formulações e aplicações surgiram com objetivo de atender a uma ampla gama de casos teóricos e práticos, como sistemas submetidos aos efeitos de variações paramétricas desconhecidas. Mais especificamente, nesta tese nós investigamos o problema de regulação quadrática para sistemas discretos lineares e com saltos Markovianos sujeitos a incertezas politópicas. Nós definimos os problemas em termos de otimização min-max baseada em mínimos quadrados regularizados incertos e funções de penalidade. Nós consideramos os casos onde incertezas afetam matrizes do modelo e probabilidades de transição, e também sistemas com saltos Markovianos com cadeia não observada. Para cada cenário, nós elaboramos uma função de custo quadrática para acomodar todos os vértices do politopo de uma maneira unificada enquanto mantemos a convexidade dos problemas de otimização. As soluções são recursivas e produzem ganhos de realimentação de estado robustos com esforço computacional relativamente menor que o esforço despendido em abordagens baseadas em desigualdades matriciais lineares. Expandindo as estruturas matriciais das soluções, conseguimos formas reduzidas equivalentes que são mais adequadas para análises de convergência e estabilidade através de equações algébricas de Riccati. Então, considerando que algumas condições de detectabilidade e estabilizabilidade sejam satisfeitas, os ganhos de realimentação garantem a estabilidade dos sistemas em malha fechada associados. O método proposto não exige ajuste adicional de parâmetros durante a operação, o que é desejável em aplicações embarcadas e em sistemas com muitos vértices e modos Markovianos. Ademais, nós providenciamos exemplos numéricos e de aplicações para validarmos nossos resultados e para compará-los com outros controladores disponíveis na literatura de controle robusto.Biblioteca Digitais de Teses e Dissertações da USPTerra, Marco HenriqueBueno, José Nuno Almeida Dias2023-05-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-03T12:42:58Zoai:teses.usp.br:tde-02082023-084309Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-03T12:42:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
Métodos recursivos robustos para sistemas discretos sujeitos a incertezas politópicas
title Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
spellingShingle Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
Bueno, José Nuno Almeida Dias
algebraic Riccati equations
controle robusto
discrete-time linear systems
equações algébricas de Riccati
incertezas politópicas
linear quadratic regulator
Markov jump systems
optimization
otimização
polytopic uncertainties
regulador quadrático linear
robust control
sistemas lineares discretos
sistemas sujeitos a saltos Markovianos
title_short Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
title_full Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
title_fullStr Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
title_full_unstemmed Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
title_sort Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
author Bueno, José Nuno Almeida Dias
author_facet Bueno, José Nuno Almeida Dias
author_role author
dc.contributor.none.fl_str_mv Terra, Marco Henrique
dc.contributor.author.fl_str_mv Bueno, José Nuno Almeida Dias
dc.subject.por.fl_str_mv algebraic Riccati equations
controle robusto
discrete-time linear systems
equações algébricas de Riccati
incertezas politópicas
linear quadratic regulator
Markov jump systems
optimization
otimização
polytopic uncertainties
regulador quadrático linear
robust control
sistemas lineares discretos
sistemas sujeitos a saltos Markovianos
topic algebraic Riccati equations
controle robusto
discrete-time linear systems
equações algébricas de Riccati
incertezas politópicas
linear quadratic regulator
Markov jump systems
optimization
otimização
polytopic uncertainties
regulador quadrático linear
robust control
sistemas lineares discretos
sistemas sujeitos a saltos Markovianos
description The linear quadratic regulation problem for discrete-time systems has been subjected to research since its first appearance in the literature in the 1960s. Thereafter, different formulations and applications came to light to accommodate a wide range of theoretical and practical cases, such as systems undergoing the effects of unknown parametric variations. More specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time linear and Markov jump linear systems subject to polytopic uncertainties. We define the problems regarding min-max optimization based on regularized least squares with uncertain data and penalty functions. We consider the cases where uncertainties affect the model matrices and transition probabilities and Markov jumps systems with unobserved chains. For each scenario, we designed a quadratic cost function to take all polytopic vertices into account in a unified manner while keeping the optimization problems\' convexity. The recursive solutions yield robust state feedback gains with a relatively lower computational burden if compared, for instance, with linear matrix inequalities approaches. By expanding the matrix structures of the solutions, we achieved equivalent reduced forms that are more adequate for convergence and stability analyses based on algebraic Riccati equations. Then, provided that some detectability and stabilizability conditions hold, the feedback gains ensure the stability of the associated closed-loop systems. The proposed method requires no further parameter tuning during operation, which is desirable in embedded applications and in systems with many vertices and Markov modes. Furthermore, we provide numerical and application examples to validate our results
publishDate 2023
dc.date.none.fl_str_mv 2023-05-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/
url https://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256567229972480