Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/ |
Resumo: | The linear quadratic regulation problem for discrete-time systems has been subjected to research since its first appearance in the literature in the 1960s. Thereafter, different formulations and applications came to light to accommodate a wide range of theoretical and practical cases, such as systems undergoing the effects of unknown parametric variations. More specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time linear and Markov jump linear systems subject to polytopic uncertainties. We define the problems regarding min-max optimization based on regularized least squares with uncertain data and penalty functions. We consider the cases where uncertainties affect the model matrices and transition probabilities and Markov jumps systems with unobserved chains. For each scenario, we designed a quadratic cost function to take all polytopic vertices into account in a unified manner while keeping the optimization problems\' convexity. The recursive solutions yield robust state feedback gains with a relatively lower computational burden if compared, for instance, with linear matrix inequalities approaches. By expanding the matrix structures of the solutions, we achieved equivalent reduced forms that are more adequate for convergence and stability analyses based on algebraic Riccati equations. Then, provided that some detectability and stabilizability conditions hold, the feedback gains ensure the stability of the associated closed-loop systems. The proposed method requires no further parameter tuning during operation, which is desirable in embedded applications and in systems with many vertices and Markov modes. Furthermore, we provide numerical and application examples to validate our results |
id |
USP_fb37ad9e60ef92c50c8007e980434058 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02082023-084309 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertaintiesMétodos recursivos robustos para sistemas discretos sujeitos a incertezas politópicasalgebraic Riccati equationscontrole robustodiscrete-time linear systemsequações algébricas de Riccatiincertezas politópicaslinear quadratic regulatorMarkov jump systemsoptimizationotimizaçãopolytopic uncertaintiesregulador quadrático linearrobust controlsistemas lineares discretossistemas sujeitos a saltos MarkovianosThe linear quadratic regulation problem for discrete-time systems has been subjected to research since its first appearance in the literature in the 1960s. Thereafter, different formulations and applications came to light to accommodate a wide range of theoretical and practical cases, such as systems undergoing the effects of unknown parametric variations. More specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time linear and Markov jump linear systems subject to polytopic uncertainties. We define the problems regarding min-max optimization based on regularized least squares with uncertain data and penalty functions. We consider the cases where uncertainties affect the model matrices and transition probabilities and Markov jumps systems with unobserved chains. For each scenario, we designed a quadratic cost function to take all polytopic vertices into account in a unified manner while keeping the optimization problems\' convexity. The recursive solutions yield robust state feedback gains with a relatively lower computational burden if compared, for instance, with linear matrix inequalities approaches. By expanding the matrix structures of the solutions, we achieved equivalent reduced forms that are more adequate for convergence and stability analyses based on algebraic Riccati equations. Then, provided that some detectability and stabilizability conditions hold, the feedback gains ensure the stability of the associated closed-loop systems. The proposed method requires no further parameter tuning during operation, which is desirable in embedded applications and in systems with many vertices and Markov modes. Furthermore, we provide numerical and application examples to validate our resultsO problema de regulação quadrática linear para sistemas discretos tem sido assunto de pesquisa desde suas primeiras aparições na literatura nos anos 1960. Desde então, diferentes formulações e aplicações surgiram com objetivo de atender a uma ampla gama de casos teóricos e práticos, como sistemas submetidos aos efeitos de variações paramétricas desconhecidas. Mais especificamente, nesta tese nós investigamos o problema de regulação quadrática para sistemas discretos lineares e com saltos Markovianos sujeitos a incertezas politópicas. Nós definimos os problemas em termos de otimização min-max baseada em mínimos quadrados regularizados incertos e funções de penalidade. Nós consideramos os casos onde incertezas afetam matrizes do modelo e probabilidades de transição, e também sistemas com saltos Markovianos com cadeia não observada. Para cada cenário, nós elaboramos uma função de custo quadrática para acomodar todos os vértices do politopo de uma maneira unificada enquanto mantemos a convexidade dos problemas de otimização. As soluções são recursivas e produzem ganhos de realimentação de estado robustos com esforço computacional relativamente menor que o esforço despendido em abordagens baseadas em desigualdades matriciais lineares. Expandindo as estruturas matriciais das soluções, conseguimos formas reduzidas equivalentes que são mais adequadas para análises de convergência e estabilidade através de equações algébricas de Riccati. Então, considerando que algumas condições de detectabilidade e estabilizabilidade sejam satisfeitas, os ganhos de realimentação garantem a estabilidade dos sistemas em malha fechada associados. O método proposto não exige ajuste adicional de parâmetros durante a operação, o que é desejável em aplicações embarcadas e em sistemas com muitos vértices e modos Markovianos. Ademais, nós providenciamos exemplos numéricos e de aplicações para validarmos nossos resultados e para compará-los com outros controladores disponíveis na literatura de controle robusto.Biblioteca Digitais de Teses e Dissertações da USPTerra, Marco HenriqueBueno, José Nuno Almeida Dias2023-05-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-03T12:42:58Zoai:teses.usp.br:tde-02082023-084309Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-03T12:42:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties Métodos recursivos robustos para sistemas discretos sujeitos a incertezas politópicas |
title |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties |
spellingShingle |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties Bueno, José Nuno Almeida Dias algebraic Riccati equations controle robusto discrete-time linear systems equações algébricas de Riccati incertezas politópicas linear quadratic regulator Markov jump systems optimization otimização polytopic uncertainties regulador quadrático linear robust control sistemas lineares discretos sistemas sujeitos a saltos Markovianos |
title_short |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties |
title_full |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties |
title_fullStr |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties |
title_full_unstemmed |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties |
title_sort |
Robust recursive frameworks for discrete-time linear systems subject to polytopic uncertainties |
author |
Bueno, José Nuno Almeida Dias |
author_facet |
Bueno, José Nuno Almeida Dias |
author_role |
author |
dc.contributor.none.fl_str_mv |
Terra, Marco Henrique |
dc.contributor.author.fl_str_mv |
Bueno, José Nuno Almeida Dias |
dc.subject.por.fl_str_mv |
algebraic Riccati equations controle robusto discrete-time linear systems equações algébricas de Riccati incertezas politópicas linear quadratic regulator Markov jump systems optimization otimização polytopic uncertainties regulador quadrático linear robust control sistemas lineares discretos sistemas sujeitos a saltos Markovianos |
topic |
algebraic Riccati equations controle robusto discrete-time linear systems equações algébricas de Riccati incertezas politópicas linear quadratic regulator Markov jump systems optimization otimização polytopic uncertainties regulador quadrático linear robust control sistemas lineares discretos sistemas sujeitos a saltos Markovianos |
description |
The linear quadratic regulation problem for discrete-time systems has been subjected to research since its first appearance in the literature in the 1960s. Thereafter, different formulations and applications came to light to accommodate a wide range of theoretical and practical cases, such as systems undergoing the effects of unknown parametric variations. More specifically, in this thesis, we investigate the quadratic regulation problem for discrete-time linear and Markov jump linear systems subject to polytopic uncertainties. We define the problems regarding min-max optimization based on regularized least squares with uncertain data and penalty functions. We consider the cases where uncertainties affect the model matrices and transition probabilities and Markov jumps systems with unobserved chains. For each scenario, we designed a quadratic cost function to take all polytopic vertices into account in a unified manner while keeping the optimization problems\' convexity. The recursive solutions yield robust state feedback gains with a relatively lower computational burden if compared, for instance, with linear matrix inequalities approaches. By expanding the matrix structures of the solutions, we achieved equivalent reduced forms that are more adequate for convergence and stability analyses based on algebraic Riccati equations. Then, provided that some detectability and stabilizability conditions hold, the feedback gains ensure the stability of the associated closed-loop systems. The proposed method requires no further parameter tuning during operation, which is desirable in embedded applications and in systems with many vertices and Markov modes. Furthermore, we provide numerical and application examples to validate our results |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-02082023-084309/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256567229972480 |