Estudo do efeito de incertezas na otimização estrutural

Detalhes bibliográficos
Autor(a) principal: Gomes, Wellison José de Santana
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23032010-092000/
Resumo: Este trabalho apresenta um estudo do efeito de incertezas na otimização estrutural. Tal efeito pode ser quantificado em termos de probabilidades de falha bem como do risco, ou custo esperado de falha. O estudo se baseia na comparação dos resultados obtidos através de três distintas formulações do problema de otimização estrutural: otimização determinística, otimização baseada em confiabilidade e otimização de risco estrutural. Para efeitos de comparação, informações sobre risco de falha estrutural (produto da probabilidade de falha pelo custo de falha) são incorporadas nas três formulações. A otimização determinística (DDO - Deterministic Design Optimization) permite encontrar uma configuração estrutural que é ótima em termos mecânicos, mas não considera explicitamente a incerteza dos parâmetros e seus efeitos na segurança estrutural. Em conseqüência, a segurança da estrutura ótima pode ser comprometida, em comparação à segurança da estrutura original. A otimização baseada em confiabilidade (RBDO - Reliability-Based Design Optimization) garante que a estrutura ótima mantenha um nível mínimo (e mensurável) de segurança. Entretanto, os resultados são dependentes da probabilidade de falha usada como restrição na análise. A otimização de risco estrutural (RBRO - Reliability-Based Risk Optimization) aumenta o escopo do problema, buscando um balanço entre economia e segurança, objetivos estes que de uma forma geral competem entre si. Isto é possível através da quantificação de custos associados à construção, operação e manutenção da estrutura, bem como das consequências monetárias de falha. A experiência mostra que problemas de otimização estudados, são utilizados neste trabalho dois métodos de otimização heurísticos: algoritmos genéticos e método do enxame de partículas. Tendo a eficiência como objetivo, dois métodos com fundamentação matemática também são estudados: os métodos de Powell e de Polak-Ribiere. Finalmente, buscando uma relação de compromisso entre confiabilidade (capacidade de encontrar o mínimo global em todos os problemas) e eficiência, quatro algoritmos híbridos são construídos, combinando os quatro métodos citados anteriormente. Efeitos de incertezas na otimização estrutural são estudados através da comparação de soluções obtidas via diferentes formulações do problema de otimização. São apresentados alguns estudos de caso, enfatizando as diferenças entre os projetos ótimos obtidos por cada formulação. O estudo mostra que, em geral, a estrutura ótima só é encontrada pela formulação mais abrangente: a otimização de risco ou RBRO. O estudo mostra que, para que a formulação DDO encontre a mesma configuração ótima da formulação RBRO, é necessário especificar um coeficiente de segurança ótimo para cada modo de falha. De maneira semelhante, o estudo mostra que quando os custos associados a diferentes modos de falha são distintos, a formulação RBDO somente resulta na estrutura ótima quando uma probabilidade de falha ótima é especificada como restrição para cada modo falha da estrutura.
id USP_fbfc3c26537ee54f116f76c8aea1e8eb
oai_identifier_str oai:teses.usp.br:tde-23032010-092000
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudo do efeito de incertezas na otimização estruturalOn the effects of uncertainty on optimum structural designAlgoritmos híbridosEstruturas-confiabilidadeEstruturas-otimizaçãoHybrid algorithmsStructures-optimizationStructures-reliabilityEste trabalho apresenta um estudo do efeito de incertezas na otimização estrutural. Tal efeito pode ser quantificado em termos de probabilidades de falha bem como do risco, ou custo esperado de falha. O estudo se baseia na comparação dos resultados obtidos através de três distintas formulações do problema de otimização estrutural: otimização determinística, otimização baseada em confiabilidade e otimização de risco estrutural. Para efeitos de comparação, informações sobre risco de falha estrutural (produto da probabilidade de falha pelo custo de falha) são incorporadas nas três formulações. A otimização determinística (DDO - Deterministic Design Optimization) permite encontrar uma configuração estrutural que é ótima em termos mecânicos, mas não considera explicitamente a incerteza dos parâmetros e seus efeitos na segurança estrutural. Em conseqüência, a segurança da estrutura ótima pode ser comprometida, em comparação à segurança da estrutura original. A otimização baseada em confiabilidade (RBDO - Reliability-Based Design Optimization) garante que a estrutura ótima mantenha um nível mínimo (e mensurável) de segurança. Entretanto, os resultados são dependentes da probabilidade de falha usada como restrição na análise. A otimização de risco estrutural (RBRO - Reliability-Based Risk Optimization) aumenta o escopo do problema, buscando um balanço entre economia e segurança, objetivos estes que de uma forma geral competem entre si. Isto é possível através da quantificação de custos associados à construção, operação e manutenção da estrutura, bem como das consequências monetárias de falha. A experiência mostra que problemas de otimização estudados, são utilizados neste trabalho dois métodos de otimização heurísticos: algoritmos genéticos e método do enxame de partículas. Tendo a eficiência como objetivo, dois métodos com fundamentação matemática também são estudados: os métodos de Powell e de Polak-Ribiere. Finalmente, buscando uma relação de compromisso entre confiabilidade (capacidade de encontrar o mínimo global em todos os problemas) e eficiência, quatro algoritmos híbridos são construídos, combinando os quatro métodos citados anteriormente. Efeitos de incertezas na otimização estrutural são estudados através da comparação de soluções obtidas via diferentes formulações do problema de otimização. São apresentados alguns estudos de caso, enfatizando as diferenças entre os projetos ótimos obtidos por cada formulação. O estudo mostra que, em geral, a estrutura ótima só é encontrada pela formulação mais abrangente: a otimização de risco ou RBRO. O estudo mostra que, para que a formulação DDO encontre a mesma configuração ótima da formulação RBRO, é necessário especificar um coeficiente de segurança ótimo para cada modo de falha. De maneira semelhante, o estudo mostra que quando os custos associados a diferentes modos de falha são distintos, a formulação RBDO somente resulta na estrutura ótima quando uma probabilidade de falha ótima é especificada como restrição para cada modo falha da estrutura.In this study the effects of uncertainty on optimum structural design are investigated, by comparing three distinct formulations of a structural optimization problem. Such effects can be quantified in terms of failure probabilities and risk, or expected costs of failure. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation do not consider explicitly parameter uncertainty and its effects on structural safety. As a consequence, safety of the optimum structure can be compromised, in comparison to safety of the original structure. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probability used as constraint in the analysis. Risk optimization increases the scope of the problem, by addressing the compromising goals of economy and safety, and allowing one to find a proper point of balance between these goals. This is accomplished by quantifying the costs associated to construction, operation and maintenance of the structure, as well as the monetary consequences of failure. Experience shows that structural optimization problems can have multiple local minima. With the objective of finding the global minimum in all studied problems, two heuristic optimization methods are used in this study: genetic algorithms and particle swarm optimization. Aiming at efficiency, two methods with mathematical foundations are also considered: the methods of Powel and Polak-Ribiere. Finally, looking for a compromise between reliability (capacity to find the global minimum) and efficiency, four hybrid algorithms are constructed, combining the four methods just cited. The study investigates the effects of uncertainty on optimum structural design by comparing solutions obtained via the different formulations of the optimization problem. The paper presents some case studies, highlighting the differences in the optimum designs obtained with each formulation. The study leads to a better understanding of the limitations of each formulation in the solution of structural optimization problems. The investigation shows that, in general, the optimum structure can only be found by the most comprehensive formulation: risk optimization or RBRO. The study shows that DDO only leads to the optimum structure if an optimum safety coefficient is used as constraint for each individual failure mode. In a similar way, the investigation shows that when the costs associated to distinct failure modes are different, the RBDO formulation only leads to the optimum structural design if an optimum failure probability is specified as constraint for each failure mode of the structure.Biblioteca Digitais de Teses e Dissertações da USPBeck, André TeófiloGomes, Wellison José de Santana2010-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18134/tde-23032010-092000/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-23032010-092000Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudo do efeito de incertezas na otimização estrutural
On the effects of uncertainty on optimum structural design
title Estudo do efeito de incertezas na otimização estrutural
spellingShingle Estudo do efeito de incertezas na otimização estrutural
Gomes, Wellison José de Santana
Algoritmos híbridos
Estruturas-confiabilidade
Estruturas-otimização
Hybrid algorithms
Structures-optimization
Structures-reliability
title_short Estudo do efeito de incertezas na otimização estrutural
title_full Estudo do efeito de incertezas na otimização estrutural
title_fullStr Estudo do efeito de incertezas na otimização estrutural
title_full_unstemmed Estudo do efeito de incertezas na otimização estrutural
title_sort Estudo do efeito de incertezas na otimização estrutural
author Gomes, Wellison José de Santana
author_facet Gomes, Wellison José de Santana
author_role author
dc.contributor.none.fl_str_mv Beck, André Teófilo
dc.contributor.author.fl_str_mv Gomes, Wellison José de Santana
dc.subject.por.fl_str_mv Algoritmos híbridos
Estruturas-confiabilidade
Estruturas-otimização
Hybrid algorithms
Structures-optimization
Structures-reliability
topic Algoritmos híbridos
Estruturas-confiabilidade
Estruturas-otimização
Hybrid algorithms
Structures-optimization
Structures-reliability
description Este trabalho apresenta um estudo do efeito de incertezas na otimização estrutural. Tal efeito pode ser quantificado em termos de probabilidades de falha bem como do risco, ou custo esperado de falha. O estudo se baseia na comparação dos resultados obtidos através de três distintas formulações do problema de otimização estrutural: otimização determinística, otimização baseada em confiabilidade e otimização de risco estrutural. Para efeitos de comparação, informações sobre risco de falha estrutural (produto da probabilidade de falha pelo custo de falha) são incorporadas nas três formulações. A otimização determinística (DDO - Deterministic Design Optimization) permite encontrar uma configuração estrutural que é ótima em termos mecânicos, mas não considera explicitamente a incerteza dos parâmetros e seus efeitos na segurança estrutural. Em conseqüência, a segurança da estrutura ótima pode ser comprometida, em comparação à segurança da estrutura original. A otimização baseada em confiabilidade (RBDO - Reliability-Based Design Optimization) garante que a estrutura ótima mantenha um nível mínimo (e mensurável) de segurança. Entretanto, os resultados são dependentes da probabilidade de falha usada como restrição na análise. A otimização de risco estrutural (RBRO - Reliability-Based Risk Optimization) aumenta o escopo do problema, buscando um balanço entre economia e segurança, objetivos estes que de uma forma geral competem entre si. Isto é possível através da quantificação de custos associados à construção, operação e manutenção da estrutura, bem como das consequências monetárias de falha. A experiência mostra que problemas de otimização estudados, são utilizados neste trabalho dois métodos de otimização heurísticos: algoritmos genéticos e método do enxame de partículas. Tendo a eficiência como objetivo, dois métodos com fundamentação matemática também são estudados: os métodos de Powell e de Polak-Ribiere. Finalmente, buscando uma relação de compromisso entre confiabilidade (capacidade de encontrar o mínimo global em todos os problemas) e eficiência, quatro algoritmos híbridos são construídos, combinando os quatro métodos citados anteriormente. Efeitos de incertezas na otimização estrutural são estudados através da comparação de soluções obtidas via diferentes formulações do problema de otimização. São apresentados alguns estudos de caso, enfatizando as diferenças entre os projetos ótimos obtidos por cada formulação. O estudo mostra que, em geral, a estrutura ótima só é encontrada pela formulação mais abrangente: a otimização de risco ou RBRO. O estudo mostra que, para que a formulação DDO encontre a mesma configuração ótima da formulação RBRO, é necessário especificar um coeficiente de segurança ótimo para cada modo de falha. De maneira semelhante, o estudo mostra que quando os custos associados a diferentes modos de falha são distintos, a formulação RBDO somente resulta na estrutura ótima quando uma probabilidade de falha ótima é especificada como restrição para cada modo falha da estrutura.
publishDate 2010
dc.date.none.fl_str_mv 2010-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23032010-092000/
url http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23032010-092000/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257294159478784