Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo

Detalhes bibliográficos
Autor(a) principal: Balbo, Antonio Roberto
Data de Publicação: 1998
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-17042018-093122/
Resumo: A Mecânica do Dano Contínuo é atualmente uma poderosa ferramenta para se modelar o comportamento não-linear de vários materiais decorrente da evolução de um processo de microfissuração. A perda de rigidez causada pelo processo físico tem sido considerada em modelos constitutivos através de variáveis de dano escalar, vetorial ou tensorial. Quando o carregamento é proporcionalmente crescente as deformações residuais podem ser ignoradas e relações constitutivas simples podem ser obtidas, onde os efeitos do dano aparecem por uma penalização direta das propriedades elásticas. Por outro lado, efeitos de dano podem ser acoplados com deformações residuais levando a relações constitutivas mais gerais. Esse trabalho está relacionado a esses tipos de modelos assumindo que o meio ideal apresenta um comportamento elástico linear com danificação ou elastoplástico com danificação. Um dos principais aspectos discutido relaciona-se à formulação variacional, a qual está baseada em conceitos de Análise Convexa e Não-Convexa. Explorando o fato que a evolução do dano tem correspondência com a idealização de regime de encruamento negativo, a teoria de localização de deformação é abordada e um estudo da condição necessária de singularidade ou perda da condição de elipticidade é realizado. Na sequência, uma proposta preliminar para uma análise de pós-singularidade, baseada na Teoria de Bifurcação, é feita no sentido de caracterizar pontos limite ou pontos de bifurcação de solução, em sistemas conservativos.
id USP_fd84287d7edafdeebbbf3b42f3d91415
oai_identifier_str oai:teses.usp.br:tde-17042018-093122
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuoContribution to mathematic formulation of continuum damage materials constitutive modelsContinuum damage mechanicsDamage modelsLocalização de deformaçãoMecânica do dano contínuoModelos com danoStrain localizationA Mecânica do Dano Contínuo é atualmente uma poderosa ferramenta para se modelar o comportamento não-linear de vários materiais decorrente da evolução de um processo de microfissuração. A perda de rigidez causada pelo processo físico tem sido considerada em modelos constitutivos através de variáveis de dano escalar, vetorial ou tensorial. Quando o carregamento é proporcionalmente crescente as deformações residuais podem ser ignoradas e relações constitutivas simples podem ser obtidas, onde os efeitos do dano aparecem por uma penalização direta das propriedades elásticas. Por outro lado, efeitos de dano podem ser acoplados com deformações residuais levando a relações constitutivas mais gerais. Esse trabalho está relacionado a esses tipos de modelos assumindo que o meio ideal apresenta um comportamento elástico linear com danificação ou elastoplástico com danificação. Um dos principais aspectos discutido relaciona-se à formulação variacional, a qual está baseada em conceitos de Análise Convexa e Não-Convexa. Explorando o fato que a evolução do dano tem correspondência com a idealização de regime de encruamento negativo, a teoria de localização de deformação é abordada e um estudo da condição necessária de singularidade ou perda da condição de elipticidade é realizado. Na sequência, uma proposta preliminar para uma análise de pós-singularidade, baseada na Teoria de Bifurcação, é feita no sentido de caracterizar pontos limite ou pontos de bifurcação de solução, em sistemas conservativos.Continuum Damage Mechanics is nowadays a powerful tool to model the non-linear behaviour of several materials due to evolution of a microcracking process. The lost of rigidity caused by such physical process has been accounted in the constitutive models through a scalar, vectorial or tensorial damage variables. When proportional loading is considered the residuals strains can be ignored and simple constitutive relations can be obtained in which damage effects appear by direct penalization of the elastic properties. On the other hand, damage effects can be coupled with residual strains leading to more general constitutive relations. This work is related to such kind of models assuming that the ideal medium presents a linear elastic-damage or an elastoplastic-damage behaviour. One of the main topics discussed is related to the variational formulation which is based on Convex and Non-Convex Analysis concepts. Exploring the fact that damage evolution has correspondence with a softening idealised regime, the strain localization theory is treated and a study of a necessary condition for singularity or ellipticity tose condition is developed. In the sequence, a introductory poscritical analysis is proposed, based in the bifurcation theory and aiming to detect if the singularity corresponds to a limit or a bifurcation point solution, in conservative systems.Biblioteca Digitais de Teses e Dissertações da USPProença, Sérgio Persival BaronciniBalbo, Antonio Roberto1998-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18134/tde-17042018-093122/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-17042018-093122Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
Contribution to mathematic formulation of continuum damage materials constitutive models
title Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
spellingShingle Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
Balbo, Antonio Roberto
Continuum damage mechanics
Damage models
Localização de deformação
Mecânica do dano contínuo
Modelos com dano
Strain localization
title_short Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
title_full Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
title_fullStr Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
title_full_unstemmed Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
title_sort Contribuição à formulação matemática de modelos constitutivos para materiais com dano contínuo
author Balbo, Antonio Roberto
author_facet Balbo, Antonio Roberto
author_role author
dc.contributor.none.fl_str_mv Proença, Sérgio Persival Baroncini
dc.contributor.author.fl_str_mv Balbo, Antonio Roberto
dc.subject.por.fl_str_mv Continuum damage mechanics
Damage models
Localização de deformação
Mecânica do dano contínuo
Modelos com dano
Strain localization
topic Continuum damage mechanics
Damage models
Localização de deformação
Mecânica do dano contínuo
Modelos com dano
Strain localization
description A Mecânica do Dano Contínuo é atualmente uma poderosa ferramenta para se modelar o comportamento não-linear de vários materiais decorrente da evolução de um processo de microfissuração. A perda de rigidez causada pelo processo físico tem sido considerada em modelos constitutivos através de variáveis de dano escalar, vetorial ou tensorial. Quando o carregamento é proporcionalmente crescente as deformações residuais podem ser ignoradas e relações constitutivas simples podem ser obtidas, onde os efeitos do dano aparecem por uma penalização direta das propriedades elásticas. Por outro lado, efeitos de dano podem ser acoplados com deformações residuais levando a relações constitutivas mais gerais. Esse trabalho está relacionado a esses tipos de modelos assumindo que o meio ideal apresenta um comportamento elástico linear com danificação ou elastoplástico com danificação. Um dos principais aspectos discutido relaciona-se à formulação variacional, a qual está baseada em conceitos de Análise Convexa e Não-Convexa. Explorando o fato que a evolução do dano tem correspondência com a idealização de regime de encruamento negativo, a teoria de localização de deformação é abordada e um estudo da condição necessária de singularidade ou perda da condição de elipticidade é realizado. Na sequência, uma proposta preliminar para uma análise de pós-singularidade, baseada na Teoria de Bifurcação, é feita no sentido de caracterizar pontos limite ou pontos de bifurcação de solução, em sistemas conservativos.
publishDate 1998
dc.date.none.fl_str_mv 1998-06-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18134/tde-17042018-093122/
url http://www.teses.usp.br/teses/disponiveis/18/18134/tde-17042018-093122/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256514225504256