Operadores binários para consulta de similaridade em banco de dados multimídia

Detalhes bibliográficos
Autor(a) principal: Seraphim, Enzo
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012007-114018/
Resumo: Os atuais gerenciadores de banco de dados não são adequados para manipulação de dados complexos; e entre eles destacamos os dados multimídia que, para agilizar as consultas usam a operação de igualdade sobre as estruturas de indexação.Operações de igualdade são pouco utilizadas em operações que envolvem dados complexos, uma vez que, a existência de dois elementos extremamente iguais é rara. Uma classe de operadores que se adequa melhor para manipulação desses dados são os operadores por similaridade. Exemplo de operadores de seleção por similaridade são a consulta por abrangência (range queries) e consulta aos vizinhos mais próximos. Exemplificando, o operador de seleção aos vizinhos mais próximos responde a consultas como, ?selecione as cinco proteínas mais parecidas pelo alinhamento da proteína Sparc (responsável pelo câncer de pele)?. Existem muitos trabalhos desenvolvidos no sentido de prover operadores de seleção por similaridade envolvendo estruturas baseadas em árvores. Entretanto, poucos estudos têm sido realizados envolvendo a utilização de operadores diferentes da seleção, por exemplo, a junção. Um operador de junção compara pares de objetos de elementos pertencentes ao domínio dos dados, ao passo que um operador de seleção recebe uma constante para a comparação dos elementos. Podemos ter assim, três operadores de junção por similaridade: operadores de junção por abrangência, por vizinhos mais próximos e sobre os pares de vizinhos mais próximos. Exemplificando, uma consulta utilizando junção por abrangência responde a consultas do tipo: ?Selecione as proteínas contidas no vírus da Hepatite B que diferem em até duas unidades de alinhamento das contidas no vírus da Hepatite C?. Este trabalho apresenta um novo método de acesso métrico em extrema quantidade de dados bem como, formas de implementação das formas de junção em estruturas métricas
id USP_fddc31e5412e8a9939fbdb28f3765c5e
oai_identifier_str oai:teses.usp.br:tde-24012007-114018
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Operadores binários para consulta de similaridade em banco de dados multimídiaBinary operators in multimidia data baseEstruturas métricasIndexação por similaridadeJunção por similaridadeMetric structuresSimilarity infexSimilarity joinOs atuais gerenciadores de banco de dados não são adequados para manipulação de dados complexos; e entre eles destacamos os dados multimídia que, para agilizar as consultas usam a operação de igualdade sobre as estruturas de indexação.Operações de igualdade são pouco utilizadas em operações que envolvem dados complexos, uma vez que, a existência de dois elementos extremamente iguais é rara. Uma classe de operadores que se adequa melhor para manipulação desses dados são os operadores por similaridade. Exemplo de operadores de seleção por similaridade são a consulta por abrangência (range queries) e consulta aos vizinhos mais próximos. Exemplificando, o operador de seleção aos vizinhos mais próximos responde a consultas como, ?selecione as cinco proteínas mais parecidas pelo alinhamento da proteína Sparc (responsável pelo câncer de pele)?. Existem muitos trabalhos desenvolvidos no sentido de prover operadores de seleção por similaridade envolvendo estruturas baseadas em árvores. Entretanto, poucos estudos têm sido realizados envolvendo a utilização de operadores diferentes da seleção, por exemplo, a junção. Um operador de junção compara pares de objetos de elementos pertencentes ao domínio dos dados, ao passo que um operador de seleção recebe uma constante para a comparação dos elementos. Podemos ter assim, três operadores de junção por similaridade: operadores de junção por abrangência, por vizinhos mais próximos e sobre os pares de vizinhos mais próximos. Exemplificando, uma consulta utilizando junção por abrangência responde a consultas do tipo: ?Selecione as proteínas contidas no vírus da Hepatite B que diferem em até duas unidades de alinhamento das contidas no vírus da Hepatite C?. Este trabalho apresenta um novo método de acesso métrico em extrema quantidade de dados bem como, formas de implementação das formas de junção em estruturas métricasThe present databases managers are not adequated for complex data manipulation and among them we point out the multimedia data that to speed up the query use the equality operation on the index structure. Equality operations are not much used in operations that involve complex data sence the presence of two elements extremely equal is rare. An operator class that better manipulates these data are the similarity operators. Selection operators by similarity are the range query and the nearest neighbors query. For example, the selection operator to the nearest neighbors answers the queries like: ?select five proteins more similar by the alignment of the Sparc protein (responsible for the skin cancer)?. There are many works developed to provide similarity by selection operators envvolving structures based in trees. However, few studies have been done involving the use of different operators selection, for example, the join. A join operator compares pairs of objects of the elements belonging to the domain of the data, whereas a selection operator receives a constant to make the comparison of the elements. We can have three similarity join operators: the range join operators, the nearest neighbor and the closest neighbors pair. For instance, a query using the range join answers these kind of queries: ?Select the proteins restrained in the Hepatitis B virus that differ up to two unities from the alignment of the protein found in the Heapatitis C virus?. This work presents a new metric access method with an extreme amount of data as well as implementations forms of the join in metric structuresBiblioteca Digitais de Teses e Dissertações da USPTraina Junior, CaetanoSeraphim, Enzo2006-01-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012007-114018/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-24012007-114018Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Operadores binários para consulta de similaridade em banco de dados multimídia
Binary operators in multimidia data base
title Operadores binários para consulta de similaridade em banco de dados multimídia
spellingShingle Operadores binários para consulta de similaridade em banco de dados multimídia
Seraphim, Enzo
Estruturas métricas
Indexação por similaridade
Junção por similaridade
Metric structures
Similarity infex
Similarity join
title_short Operadores binários para consulta de similaridade em banco de dados multimídia
title_full Operadores binários para consulta de similaridade em banco de dados multimídia
title_fullStr Operadores binários para consulta de similaridade em banco de dados multimídia
title_full_unstemmed Operadores binários para consulta de similaridade em banco de dados multimídia
title_sort Operadores binários para consulta de similaridade em banco de dados multimídia
author Seraphim, Enzo
author_facet Seraphim, Enzo
author_role author
dc.contributor.none.fl_str_mv Traina Junior, Caetano
dc.contributor.author.fl_str_mv Seraphim, Enzo
dc.subject.por.fl_str_mv Estruturas métricas
Indexação por similaridade
Junção por similaridade
Metric structures
Similarity infex
Similarity join
topic Estruturas métricas
Indexação por similaridade
Junção por similaridade
Metric structures
Similarity infex
Similarity join
description Os atuais gerenciadores de banco de dados não são adequados para manipulação de dados complexos; e entre eles destacamos os dados multimídia que, para agilizar as consultas usam a operação de igualdade sobre as estruturas de indexação.Operações de igualdade são pouco utilizadas em operações que envolvem dados complexos, uma vez que, a existência de dois elementos extremamente iguais é rara. Uma classe de operadores que se adequa melhor para manipulação desses dados são os operadores por similaridade. Exemplo de operadores de seleção por similaridade são a consulta por abrangência (range queries) e consulta aos vizinhos mais próximos. Exemplificando, o operador de seleção aos vizinhos mais próximos responde a consultas como, ?selecione as cinco proteínas mais parecidas pelo alinhamento da proteína Sparc (responsável pelo câncer de pele)?. Existem muitos trabalhos desenvolvidos no sentido de prover operadores de seleção por similaridade envolvendo estruturas baseadas em árvores. Entretanto, poucos estudos têm sido realizados envolvendo a utilização de operadores diferentes da seleção, por exemplo, a junção. Um operador de junção compara pares de objetos de elementos pertencentes ao domínio dos dados, ao passo que um operador de seleção recebe uma constante para a comparação dos elementos. Podemos ter assim, três operadores de junção por similaridade: operadores de junção por abrangência, por vizinhos mais próximos e sobre os pares de vizinhos mais próximos. Exemplificando, uma consulta utilizando junção por abrangência responde a consultas do tipo: ?Selecione as proteínas contidas no vírus da Hepatite B que diferem em até duas unidades de alinhamento das contidas no vírus da Hepatite C?. Este trabalho apresenta um novo método de acesso métrico em extrema quantidade de dados bem como, formas de implementação das formas de junção em estruturas métricas
publishDate 2006
dc.date.none.fl_str_mv 2006-01-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012007-114018/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012007-114018/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257380709990400