On explicit exponential integrators in the solution of elastic wave propagation equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45132/tde-16052024-124827/ |
Resumo: | The exponential integrators, a class of numerical methods used to solve differential equations, are the subject of this work. Specifically, we focus on explicit exponential integrators used to solve the differential equations describing the propagation of acoustic and elastic waves, with absorbing boundary conditions, encountered in seismic imaging applications. Among the various methods of exponential integrators, we analyze in detail the Faber polynomial-based method, a generalization of the well-known Chebyshev exponential integrator. Considering the state of the art of the Faber polynomial approximation, we discuss the main limitations of the method and propose solutions for them. Among the theoretical results of the Faber polynomial approximation, we present a more accurate estimate of the approximation error of the method for normal matrices, than the one reported in the literature. We also show the importance of accurate estimates of the operator spectrum to ensure fast convergence of the method. Moreover, based on various numerical experiments, we outline a scheme to obtain eigenvalue estimates using only low-dimensional operators. Among the numerical results, we observe that increasing the degree of Faber polynomials also increases the maximum time step size in temporal integration. Furthermore, in analyzing computational efficiency, we find that using higher degrees of Faber polynomials reduces the number of matrix-vector operations performed. The robustness of our numerical results is ensured by implementing various tests with different levels of complexity. Additionally, we compare the Faber polynomial method with other explicit exponential integrators, such as the Krylov subspace method and high-order Runge-Kutta methods, along with classical low-order methods. Comparisons were made in experimental scenarios simulating real situations encountered in seismic imaging applications. Subsequently, we evaluate the stability, dispersion, numerical convergence, and computational efficiency of these methods. In our analysis, among high-order exponential integrators, the Krylov subspace-based method showed the best convergence results compared to all exponential integration methods. Allowing longer time steps for the same degree of approximation compared to other methods. Notably, when comparing methods for computational efficiency, we observed that high-order numerical methods can achieve efficiency comparable to low-order methods while allowing significantly larger time steps. To highlight other applications that require an efficient solution to the wave equation, we present a new application in the field of mathematical modeling of cancer. As an innovative proposal, we developed a model based on continuum mechanics to simulate the effect of High-Energy Shock Wave (HESW) therapy on the growth of an avascular tumor. In this model, we demonstrate that by adjusting different parameters of the HESW therapy, we can qualitatively reproduce various tumor growth patterns, as reported in the literature. Additionally, we conduct a sensitivity analysis of the model to the various therapy parameters, identifying the most influential elements in tumor growth. |
id |
USP_ff783394e648f89f1eb2cf212b237807 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16052024-124827 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
On explicit exponential integrators in the solution of elastic wave propagation equationsSobre integradores exponenciais explícitos na solução das equações elásticas de propagação das ondasCancerCâncerContinuum mechanicElasticidade linearEquação da ondaExponential integratorsFaber polynomialsHigh-Energy Shock WaveIntegradores exponenciaisLinear elasticityMathematical modelingMecânica do contínuoModelação matemáticaOndas de Choque de Alta IntensidadePolinômios de FaberWave equationThe exponential integrators, a class of numerical methods used to solve differential equations, are the subject of this work. Specifically, we focus on explicit exponential integrators used to solve the differential equations describing the propagation of acoustic and elastic waves, with absorbing boundary conditions, encountered in seismic imaging applications. Among the various methods of exponential integrators, we analyze in detail the Faber polynomial-based method, a generalization of the well-known Chebyshev exponential integrator. Considering the state of the art of the Faber polynomial approximation, we discuss the main limitations of the method and propose solutions for them. Among the theoretical results of the Faber polynomial approximation, we present a more accurate estimate of the approximation error of the method for normal matrices, than the one reported in the literature. We also show the importance of accurate estimates of the operator spectrum to ensure fast convergence of the method. Moreover, based on various numerical experiments, we outline a scheme to obtain eigenvalue estimates using only low-dimensional operators. Among the numerical results, we observe that increasing the degree of Faber polynomials also increases the maximum time step size in temporal integration. Furthermore, in analyzing computational efficiency, we find that using higher degrees of Faber polynomials reduces the number of matrix-vector operations performed. The robustness of our numerical results is ensured by implementing various tests with different levels of complexity. Additionally, we compare the Faber polynomial method with other explicit exponential integrators, such as the Krylov subspace method and high-order Runge-Kutta methods, along with classical low-order methods. Comparisons were made in experimental scenarios simulating real situations encountered in seismic imaging applications. Subsequently, we evaluate the stability, dispersion, numerical convergence, and computational efficiency of these methods. In our analysis, among high-order exponential integrators, the Krylov subspace-based method showed the best convergence results compared to all exponential integration methods. Allowing longer time steps for the same degree of approximation compared to other methods. Notably, when comparing methods for computational efficiency, we observed that high-order numerical methods can achieve efficiency comparable to low-order methods while allowing significantly larger time steps. To highlight other applications that require an efficient solution to the wave equation, we present a new application in the field of mathematical modeling of cancer. As an innovative proposal, we developed a model based on continuum mechanics to simulate the effect of High-Energy Shock Wave (HESW) therapy on the growth of an avascular tumor. In this model, we demonstrate that by adjusting different parameters of the HESW therapy, we can qualitatively reproduce various tumor growth patterns, as reported in the literature. Additionally, we conduct a sensitivity analysis of the model to the various therapy parameters, identifying the most influential elements in tumor growth.Os integradores exponenciais, uma classe de métodos numéricos usados para solucionar equações diferenciais, são o objeto de estudo deste trabalho. Especificamente, concentramo-nos em integradores exponenciais explícitos usados para resolver as equações diferenciais que descrevem a propagação de ondas acústicas e elásticas, com condições de fronteira absorvente, encontradas em aplicações de imageamento sísmico. Dentre os vários métodos de integradores exponenciais, analisamos detalhadamente o método baseado em polinômios de Faber, uma generalização do conhecido integrador exponencial que utiliza polinômios de Chebyshev. A partir do estado da arte da aproximação de polinômios de Faber, discutimos as principais limitações do método e propomos soluções para elas. Entre os resultados teóricos da aproximação de Faber, apresentamos uma estimativa mais precisa, em comparação com a literatura existente, do erro de aproximação do método para matrizes normais. Destacamos a importância de estimativas precisas do espectro do operador para garantir uma convergência rápida do método. Também, fundamentado por vários experimentos numéricos, delineamos um esquema para obter as estimativas dos autovalores usando apenas operadores de baixa dimensão. Entre os resultados numéricos, observamos que ao aumentar o grau dos polinômios de Faber, o tamanho máximo do passo de tempo na integração temporal também aumenta. Além disso, ao analisar a eficiência computacional, constatamos que o uso de graus mais altos de polinômios de Faber reduz a quantidade de operações matriz-por-vetor realizadas. A robustez de nossos resultados numéricos é assegurada por meio da implementação de vários testes com diferentes níveis de complexidade. Também, realizamos comparações entre o método dos polinômios de Faber e outros integradores exponenciais explícitos, como o método dos subespaços de Krylov e os Runge-Kuttas de alta ordem, junto com métodos clássicos de baixa ordem. As comparações foram feitas em cenários experimentais que simulam situações reais encontradas em aplicações de imageamento sísmico. Logo, avaliamos a estabilidade, dispersão, convergência numérica e eficiência computacional desses métodos. Em nossa análise, dentre os integradores exponenciais de alta ordem, o método baseado nos subespaços de Krylov apresentou os melhores resultados de convergência em comparação com todos os métodos de integração exponencial. Permitindo passos de tempo mais longos para um mesmo grau de aproximação em relação aos demais métodos. Notoriamente, ao compararmos os métodos quanto à eficiência computacional, observamos que os métodos numéricos de alta ordem conseguem atingir uma eficiência comparável aos métodos de baixa ordem, ao mesmo tempo em que permitem passos de tempo significativamente maiores. Com o intuito de destacar outras aplicações que demandam a eficiente solução da equação da onda, apresentamos uma nova aplicação na área de modelagem matemática para o tratamento do câncer. Como uma proposta inovadora, desenvolvemos um modelo fundamentado na mecânica de meios contínuos para simular o efeito da Terapia Mecânica de Ondas de Choque de Alta Intensidade (TMOC) no crescimento de um tumor avascular. Neste modelo, demonstramos que, ao ajustar diferentes parâmetros da TMOC, conseguimos reproduzir qualitativamente diversos padrões de crescimento do tumor, conforme relatado na literatura. Adicionalmente, realizamos uma análise de sensibilidade do modelo em relação aos vários parâmetros da terapia, identificando os elementos mais influentes no crescimento do tumor.Biblioteca Digitais de Teses e Dissertações da USPPeixoto, Pedro da SilvaSchreiber, MartinRavelo, Fernando Valdés2024-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45132/tde-16052024-124827/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-21T21:29:03Zoai:teses.usp.br:tde-16052024-124827Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-21T21:29:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
On explicit exponential integrators in the solution of elastic wave propagation equations Sobre integradores exponenciais explícitos na solução das equações elásticas de propagação das ondas |
title |
On explicit exponential integrators in the solution of elastic wave propagation equations |
spellingShingle |
On explicit exponential integrators in the solution of elastic wave propagation equations Ravelo, Fernando Valdés Cancer Câncer Continuum mechanic Elasticidade linear Equação da onda Exponential integrators Faber polynomials High-Energy Shock Wave Integradores exponenciais Linear elasticity Mathematical modeling Mecânica do contínuo Modelação matemática Ondas de Choque de Alta Intensidade Polinômios de Faber Wave equation |
title_short |
On explicit exponential integrators in the solution of elastic wave propagation equations |
title_full |
On explicit exponential integrators in the solution of elastic wave propagation equations |
title_fullStr |
On explicit exponential integrators in the solution of elastic wave propagation equations |
title_full_unstemmed |
On explicit exponential integrators in the solution of elastic wave propagation equations |
title_sort |
On explicit exponential integrators in the solution of elastic wave propagation equations |
author |
Ravelo, Fernando Valdés |
author_facet |
Ravelo, Fernando Valdés |
author_role |
author |
dc.contributor.none.fl_str_mv |
Peixoto, Pedro da Silva Schreiber, Martin |
dc.contributor.author.fl_str_mv |
Ravelo, Fernando Valdés |
dc.subject.por.fl_str_mv |
Cancer Câncer Continuum mechanic Elasticidade linear Equação da onda Exponential integrators Faber polynomials High-Energy Shock Wave Integradores exponenciais Linear elasticity Mathematical modeling Mecânica do contínuo Modelação matemática Ondas de Choque de Alta Intensidade Polinômios de Faber Wave equation |
topic |
Cancer Câncer Continuum mechanic Elasticidade linear Equação da onda Exponential integrators Faber polynomials High-Energy Shock Wave Integradores exponenciais Linear elasticity Mathematical modeling Mecânica do contínuo Modelação matemática Ondas de Choque de Alta Intensidade Polinômios de Faber Wave equation |
description |
The exponential integrators, a class of numerical methods used to solve differential equations, are the subject of this work. Specifically, we focus on explicit exponential integrators used to solve the differential equations describing the propagation of acoustic and elastic waves, with absorbing boundary conditions, encountered in seismic imaging applications. Among the various methods of exponential integrators, we analyze in detail the Faber polynomial-based method, a generalization of the well-known Chebyshev exponential integrator. Considering the state of the art of the Faber polynomial approximation, we discuss the main limitations of the method and propose solutions for them. Among the theoretical results of the Faber polynomial approximation, we present a more accurate estimate of the approximation error of the method for normal matrices, than the one reported in the literature. We also show the importance of accurate estimates of the operator spectrum to ensure fast convergence of the method. Moreover, based on various numerical experiments, we outline a scheme to obtain eigenvalue estimates using only low-dimensional operators. Among the numerical results, we observe that increasing the degree of Faber polynomials also increases the maximum time step size in temporal integration. Furthermore, in analyzing computational efficiency, we find that using higher degrees of Faber polynomials reduces the number of matrix-vector operations performed. The robustness of our numerical results is ensured by implementing various tests with different levels of complexity. Additionally, we compare the Faber polynomial method with other explicit exponential integrators, such as the Krylov subspace method and high-order Runge-Kutta methods, along with classical low-order methods. Comparisons were made in experimental scenarios simulating real situations encountered in seismic imaging applications. Subsequently, we evaluate the stability, dispersion, numerical convergence, and computational efficiency of these methods. In our analysis, among high-order exponential integrators, the Krylov subspace-based method showed the best convergence results compared to all exponential integration methods. Allowing longer time steps for the same degree of approximation compared to other methods. Notably, when comparing methods for computational efficiency, we observed that high-order numerical methods can achieve efficiency comparable to low-order methods while allowing significantly larger time steps. To highlight other applications that require an efficient solution to the wave equation, we present a new application in the field of mathematical modeling of cancer. As an innovative proposal, we developed a model based on continuum mechanics to simulate the effect of High-Energy Shock Wave (HESW) therapy on the growth of an avascular tumor. In this model, we demonstrate that by adjusting different parameters of the HESW therapy, we can qualitatively reproduce various tumor growth patterns, as reported in the literature. Additionally, we conduct a sensitivity analysis of the model to the various therapy parameters, identifying the most influential elements in tumor growth. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-16052024-124827/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-16052024-124827/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257071129460736 |