Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
Texto Completo: | http://repositorio.utfpr.edu.br/jspui/handle/1/4607 |
Resumo: | O processo de produção industrial capaz de produzir simultaneamente múltiplos tipos de produtos sobre a mesma linha de fabricação define um modelo industrial denominado de manufatura flexível. Um exemplo de manufatura flexível é o da indústria automotiva, que fabrica diferentes modelos de veículos sobre a mesma planta, cada um composto por um conjunto próprio de componentes. Nesse tipo de ambiente, é comum que os conjuntos de peças sejam inicialmente separados por operadores humanos para, posteriormente, serem manipulados por robôs. Como essa evolução depende da percepção humana, passa a ser um procedimento suscetível a erros de conformidade, situação em que elementos de manufatura podem não pertencer ao mesmo modelo do produto fabricado. Tal tarefa passou, recentemente, a ser complementada por percepção artificial advinda de sistemas de visão computacional (SVCs), que são compostos por câmera e um computador embarcado, para aquisição, processamento e classificação de imagens. Esses sistemas podem ser utilizados para verificar possíveis defeitos e atestar sobre a conformidade ou não de componentes nas linhas de produção. Apesar da relevância prática, a eficiência de um SVC convencional depende do controle da iluminação, enclausuramento e parada da linha para a fixação das peças, o que encarece a solução e reverte grande parte dos seus benefícios. Além disso, os métodos tradicionais de vis˜ao possuem etapas de parametrização manuais dependentes de um especialista. Recentemente, na literatura tem se abordado métodos baseados em deep learning (DL) para contornar esses problemas. Essa abordagem busca imitar a capacidade humana de aprendizado e reconhecimento de padrões, através da abstração de características de um conjunto de imagens. Essa propriedade tende a agregar robustez aos SVCs e reduzir a necessidade de controle do ambiente e da percepção humana para definição de parâmetros. Este trabalho propõe uma alternativa baseada em deep learning, de aprendizado supervisionado, para a detecção e classificação de múltiplos componentes em linhas de montagem automotiva flexível supervisionado, para detecção de objetos. Quando supervisionados, esses algoritmos requerem um conjunto de imagens como base de treino. Além das imagens, devem ser identificadas a região e a classe de cada objeto. Essa identificação consiste apenas em definir uma regi˜ao que delimite o objeto alvo e sua respectiva classe. A solução o não requer intervenções no ambiente operacional, tampouco a parada da linha de produção para coleta e análise de imagens, agregando eficiência e eficácia ao processo produtivo sem depender excessivamente de percepção humana. A abordagem ´e ilustrada por meio de dois estudos de caso conduzidos sobre uma planta real de montagem de veículos. |
id |
UTFPR-12_01b8c7d741a5122e5d112705245777e0 |
---|---|
oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/4607 |
network_acronym_str |
UTFPR-12 |
network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
repository_id_str |
|
spelling |
2019-12-16T13:48:59Z2019-12-16T13:48:59Z2019-11-21MAZZETTO, Muriel. Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning. 2019. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2019.http://repositorio.utfpr.edu.br/jspui/handle/1/4607O processo de produção industrial capaz de produzir simultaneamente múltiplos tipos de produtos sobre a mesma linha de fabricação define um modelo industrial denominado de manufatura flexível. Um exemplo de manufatura flexível é o da indústria automotiva, que fabrica diferentes modelos de veículos sobre a mesma planta, cada um composto por um conjunto próprio de componentes. Nesse tipo de ambiente, é comum que os conjuntos de peças sejam inicialmente separados por operadores humanos para, posteriormente, serem manipulados por robôs. Como essa evolução depende da percepção humana, passa a ser um procedimento suscetível a erros de conformidade, situação em que elementos de manufatura podem não pertencer ao mesmo modelo do produto fabricado. Tal tarefa passou, recentemente, a ser complementada por percepção artificial advinda de sistemas de visão computacional (SVCs), que são compostos por câmera e um computador embarcado, para aquisição, processamento e classificação de imagens. Esses sistemas podem ser utilizados para verificar possíveis defeitos e atestar sobre a conformidade ou não de componentes nas linhas de produção. Apesar da relevância prática, a eficiência de um SVC convencional depende do controle da iluminação, enclausuramento e parada da linha para a fixação das peças, o que encarece a solução e reverte grande parte dos seus benefícios. Além disso, os métodos tradicionais de vis˜ao possuem etapas de parametrização manuais dependentes de um especialista. Recentemente, na literatura tem se abordado métodos baseados em deep learning (DL) para contornar esses problemas. Essa abordagem busca imitar a capacidade humana de aprendizado e reconhecimento de padrões, através da abstração de características de um conjunto de imagens. Essa propriedade tende a agregar robustez aos SVCs e reduzir a necessidade de controle do ambiente e da percepção humana para definição de parâmetros. Este trabalho propõe uma alternativa baseada em deep learning, de aprendizado supervisionado, para a detecção e classificação de múltiplos componentes em linhas de montagem automotiva flexível supervisionado, para detecção de objetos. Quando supervisionados, esses algoritmos requerem um conjunto de imagens como base de treino. Além das imagens, devem ser identificadas a região e a classe de cada objeto. Essa identificação consiste apenas em definir uma regi˜ao que delimite o objeto alvo e sua respectiva classe. A solução o não requer intervenções no ambiente operacional, tampouco a parada da linha de produção para coleta e análise de imagens, agregando eficiência e eficácia ao processo produtivo sem depender excessivamente de percepção humana. A abordagem ´e ilustrada por meio de dois estudos de caso conduzidos sobre uma planta real de montagem de veículos.The industrial production process capable of simultaneously producing multiple types of products on the same manufacturing line defines an industrial model called flexible manufacturing. An example of flexible manufacturing is observed in the automotive industry, which manufactures different car models on the same plant, each composed of its own set of components. In this type of environment, it is common for part sets to be initially separated by human operators and subsequently manipulated by robots. As this process depends on human perception, it is susceptible to errors of conformity, a situation in which elements of manufacture may not belong to the same model of the manufactured product. This task has recently been complemented by artificial perception from computer vision systems (CSVs), camera-based systems and an embedded computer for image acquisition, processing and classification. These systems can be used to check for defects and to attest to the conformity of the components. Despite the practical relevance, the efficiency of a conventional CSV depends on the control of lighting, closure and stop of the line for the fixation of the parts, which makes the solution expensive and reverses most of its benefits. In addition, traditional methods have manual parameter assignment steps dependent on a specialist. Recently, the literature has addressed methods based on deep learning (DL) to overcome these problems. This approach seeks to imitate the human capacity for learning and pattern recognition, through the abstraction of characteristics of a set of images. This feature adds robustness to SVC, reducing the need for environmental control and human perception for parameter definition. This paper proposes a supervised learning deep text alternative for detecting multiple components in supervised flexible automotive assembly lines for object detection and classification. When supervised, these algorithms require a set of images as a training base. In addition to the images, the region and class of each object must be identified. This identification consists only of defining a region that delimits the target object and its respective class. Still, the solution does not require interventions in the operating environment, neither the stop of the production line for image collection and analysis. The approach is illustrated by two case studies conducted on an actual vehicle assembly plant.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do ParanáporUniversidade Tecnológica Federal do ParanáPato BrancoPrograma de Pós-Graduação em Engenharia ElétricaUTFPRBrasilCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAEngenharia/Tecnologia/GestãoVisão por computadorProcessamento de imagensAprendizado do computadorRedes neurais (Computação)Computer visionImage processingMachine learningNeural networks (Computer science)Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learningDetection and classification of components in automotive assembly line using deep learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPato BrancoTeixeira, Marcelohttp://lattes.cnpq.br/8925349327322997Casanova, Dalcimarhttp://lattes.cnpq.br/4155115530052195Brun, André Luizhttp://lattes.cnpq.br/4617587198467560Casanova, Dalcimarhttp://lattes.cnpq.br/4155115530052195Cavalcanti, Pablo Gauteriohttp://lattes.cnpq.br/7803338696833069Lopes, Yuri Kaszubowskihttp://lattes.cnpq.br/6645986822120975http://lattes.cnpq.br/6121503054006294Mazzetto, Murielinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRORIGINALlinhamontagemautomotivadeeplearning.pdfapplication/pdf31480107http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/4607/1/linhamontagemautomotivadeeplearning.pdfe057fc0b5aa0593c91a509aa558021d5MD51TEXTlinhamontagemautomotivadeeplearning.pdf.txtlinhamontagemautomotivadeeplearning.pdf.txtExtracted texttext/plain116021http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/4607/2/linhamontagemautomotivadeeplearning.pdf.txtc92e48443894a6d341cea54fc3638022MD52THUMBNAILlinhamontagemautomotivadeeplearning.pdf.jpglinhamontagemautomotivadeeplearning.pdf.jpgGenerated Thumbnailimage/jpeg1221http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/4607/3/linhamontagemautomotivadeeplearning.pdf.jpg41a1ca6ff1464a883a21773f220da48fMD531/46072019-12-17 04:00:53.02oai:repositorio.utfpr.edu.br:1/4607Repositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2019-12-17T06:00:53Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
dc.title.pt_BR.fl_str_mv |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning |
dc.title.alternative.pt_BR.fl_str_mv |
Detection and classification of components in automotive assembly line using deep learning |
title |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning |
spellingShingle |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning Mazzetto, Muriel CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Visão por computador Processamento de imagens Aprendizado do computador Redes neurais (Computação) Computer vision Image processing Machine learning Neural networks (Computer science) Engenharia/Tecnologia/Gestão |
title_short |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning |
title_full |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning |
title_fullStr |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning |
title_full_unstemmed |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning |
title_sort |
Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning |
author |
Mazzetto, Muriel |
author_facet |
Mazzetto, Muriel |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Teixeira, Marcelo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8925349327322997 |
dc.contributor.advisor-co1.fl_str_mv |
Casanova, Dalcimar |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4155115530052195 |
dc.contributor.referee1.fl_str_mv |
Brun, André Luiz |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/4617587198467560 |
dc.contributor.referee2.fl_str_mv |
Casanova, Dalcimar |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4155115530052195 |
dc.contributor.referee3.fl_str_mv |
Cavalcanti, Pablo Gauterio |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7803338696833069 |
dc.contributor.referee4.fl_str_mv |
Lopes, Yuri Kaszubowski |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/6645986822120975 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6121503054006294 |
dc.contributor.author.fl_str_mv |
Mazzetto, Muriel |
contributor_str_mv |
Teixeira, Marcelo Casanova, Dalcimar Brun, André Luiz Casanova, Dalcimar Cavalcanti, Pablo Gauterio Lopes, Yuri Kaszubowski |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Visão por computador Processamento de imagens Aprendizado do computador Redes neurais (Computação) Computer vision Image processing Machine learning Neural networks (Computer science) Engenharia/Tecnologia/Gestão |
dc.subject.por.fl_str_mv |
Visão por computador Processamento de imagens Aprendizado do computador Redes neurais (Computação) Computer vision Image processing Machine learning Neural networks (Computer science) |
dc.subject.capes.pt_BR.fl_str_mv |
Engenharia/Tecnologia/Gestão |
description |
O processo de produção industrial capaz de produzir simultaneamente múltiplos tipos de produtos sobre a mesma linha de fabricação define um modelo industrial denominado de manufatura flexível. Um exemplo de manufatura flexível é o da indústria automotiva, que fabrica diferentes modelos de veículos sobre a mesma planta, cada um composto por um conjunto próprio de componentes. Nesse tipo de ambiente, é comum que os conjuntos de peças sejam inicialmente separados por operadores humanos para, posteriormente, serem manipulados por robôs. Como essa evolução depende da percepção humana, passa a ser um procedimento suscetível a erros de conformidade, situação em que elementos de manufatura podem não pertencer ao mesmo modelo do produto fabricado. Tal tarefa passou, recentemente, a ser complementada por percepção artificial advinda de sistemas de visão computacional (SVCs), que são compostos por câmera e um computador embarcado, para aquisição, processamento e classificação de imagens. Esses sistemas podem ser utilizados para verificar possíveis defeitos e atestar sobre a conformidade ou não de componentes nas linhas de produção. Apesar da relevância prática, a eficiência de um SVC convencional depende do controle da iluminação, enclausuramento e parada da linha para a fixação das peças, o que encarece a solução e reverte grande parte dos seus benefícios. Além disso, os métodos tradicionais de vis˜ao possuem etapas de parametrização manuais dependentes de um especialista. Recentemente, na literatura tem se abordado métodos baseados em deep learning (DL) para contornar esses problemas. Essa abordagem busca imitar a capacidade humana de aprendizado e reconhecimento de padrões, através da abstração de características de um conjunto de imagens. Essa propriedade tende a agregar robustez aos SVCs e reduzir a necessidade de controle do ambiente e da percepção humana para definição de parâmetros. Este trabalho propõe uma alternativa baseada em deep learning, de aprendizado supervisionado, para a detecção e classificação de múltiplos componentes em linhas de montagem automotiva flexível supervisionado, para detecção de objetos. Quando supervisionados, esses algoritmos requerem um conjunto de imagens como base de treino. Além das imagens, devem ser identificadas a região e a classe de cada objeto. Essa identificação consiste apenas em definir uma regi˜ao que delimite o objeto alvo e sua respectiva classe. A solução o não requer intervenções no ambiente operacional, tampouco a parada da linha de produção para coleta e análise de imagens, agregando eficiência e eficácia ao processo produtivo sem depender excessivamente de percepção humana. A abordagem ´e ilustrada por meio de dois estudos de caso conduzidos sobre uma planta real de montagem de veículos. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-12-16T13:48:59Z |
dc.date.available.fl_str_mv |
2019-12-16T13:48:59Z |
dc.date.issued.fl_str_mv |
2019-11-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MAZZETTO, Muriel. Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning. 2019. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.utfpr.edu.br/jspui/handle/1/4607 |
identifier_str_mv |
MAZZETTO, Muriel. Detecção e classificação de múltiplos componentes em linha de montagem automotiva usando deep learning. 2019. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2019. |
url |
http://repositorio.utfpr.edu.br/jspui/handle/1/4607 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Pato Branco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
UTFPR |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Pato Branco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
instacron_str |
UTFPR |
institution |
UTFPR |
reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
bitstream.url.fl_str_mv |
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/4607/1/linhamontagemautomotivadeeplearning.pdf http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/4607/2/linhamontagemautomotivadeeplearning.pdf.txt http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/4607/3/linhamontagemautomotivadeeplearning.pdf.jpg |
bitstream.checksum.fl_str_mv |
e057fc0b5aa0593c91a509aa558021d5 c92e48443894a6d341cea54fc3638022 41a1ca6ff1464a883a21773f220da48f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
repository.mail.fl_str_mv |
|
_version_ |
1805922897066196992 |