Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo

Detalhes bibliográficos
Autor(a) principal: Ramos, Daniel Carvalho de
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/30503
Resumo: A grande dificuldade do ramo automotivo é criar um sistema de navegação seguro e confiável para o veículo autônomo, é algo que envolve muitas etapas entre elas, a fusão de sensores e redes de comunicação veicular para o reconhecimento de objetos, uma alternativa para esse desafio é a utilização de algoritmos de clusterização em sistemas de radares automotivos. O algoritmo de clusterização pode ser definido como uma técnica de Machine Learning que envolve o agrupamento de pontos de dados, e funciona da seguinte maneira, dado um conjunto de pontos de dados, podemos usar um algoritmo de agrupamento para classificar cada ponto de dados em um grupo específico. Em teoria, os pontos de dados que estão no mesmo grupo devem ter propriedades e ou recursos semelhantes, enquanto os pontos de dados em grupos diferentes devem ter propriedades e ou recursos altamente diferentes. O agrupamento é um método de aprendizado não supervisionado e é uma técnica comum para análise de dados estatísticos usada em muitos campos. Existem diversos métodos que foram desenvolvidos para a aplicação da clusterização, dentre eles temos dez métodos principais, o Affinity Propagation, Agglomerative Clustering, BIRCH, DBSCAN, KMeans, MiniBatch KMeans, Mean Shift, OPTICS, Spectral Clustering, Mixture of Gaussians. Nesse trabalho, vamos apresentar uma análise comparativa dos algoritmos de clusterização, para verificarmos, qual tem a maior eficiência para ser utilizado em um sistema de radar automotivo para o reconhecimento de objetos, ponto de extrema importância, para a construção de veículos autônomos.
id UTFPR-12_1e147e7b7df0231366f98b0802c3fb0b
oai_identifier_str oai:repositorio.utfpr.edu.br:1/30503
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2023-02-02T14:46:35Z2023-02-02T14:46:35Z2022-04-29RAMOS, Daniel Carvalho de. Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo. 2022. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2022.http://repositorio.utfpr.edu.br/jspui/handle/1/30503A grande dificuldade do ramo automotivo é criar um sistema de navegação seguro e confiável para o veículo autônomo, é algo que envolve muitas etapas entre elas, a fusão de sensores e redes de comunicação veicular para o reconhecimento de objetos, uma alternativa para esse desafio é a utilização de algoritmos de clusterização em sistemas de radares automotivos. O algoritmo de clusterização pode ser definido como uma técnica de Machine Learning que envolve o agrupamento de pontos de dados, e funciona da seguinte maneira, dado um conjunto de pontos de dados, podemos usar um algoritmo de agrupamento para classificar cada ponto de dados em um grupo específico. Em teoria, os pontos de dados que estão no mesmo grupo devem ter propriedades e ou recursos semelhantes, enquanto os pontos de dados em grupos diferentes devem ter propriedades e ou recursos altamente diferentes. O agrupamento é um método de aprendizado não supervisionado e é uma técnica comum para análise de dados estatísticos usada em muitos campos. Existem diversos métodos que foram desenvolvidos para a aplicação da clusterização, dentre eles temos dez métodos principais, o Affinity Propagation, Agglomerative Clustering, BIRCH, DBSCAN, KMeans, MiniBatch KMeans, Mean Shift, OPTICS, Spectral Clustering, Mixture of Gaussians. Nesse trabalho, vamos apresentar uma análise comparativa dos algoritmos de clusterização, para verificarmos, qual tem a maior eficiência para ser utilizado em um sistema de radar automotivo para o reconhecimento de objetos, ponto de extrema importância, para a construção de veículos autônomos.The great difficulty of the automotive industry is to create a safe and reliable navigation system for the autonomous vehicle, it is something that involves many steps, among them, the fusion of sensors and vehicular communication networks for the recognition of objects, an alternative to this challenge is the use of clustering algorithms in automotive radar systems. Clustering algorithm can be defined as a Machine Learning technique that involves grouping data points, and it works as follows, given a set of data points, we can use a clustering algorithm to classify each data point into a specific group. In theory, data points that are in the same group should have similar properties and/or features, while data points in different groups should have highly different properties and/or features. Clustering is an unsupervised learning method and is a common technique for analyzing statistical data used in many fields. There are several methods that have been developed for the application of clustering, among them we have ten main methods, Affinity Propagation, Agglomerative Clustering, BIRCH, DBSCAN, KMeans, MiniBatch KMeans, Mean Shift, OPTICS, Spectral Clustering, Mixture of Gaussians. In this work, we will present a comparative analysis of the clustering algorithms, to verify which one has the highest efficiency to be used in an automotive radar system for object recognition, a point of extreme importance, for the construction of autonomous vehicles.porUniversidade Tecnológica Federal do ParanáPonta GrossaEngenharia ElétricaUTFPRBrasilDepartamento Acadêmico de Engenharia de Elétricahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAAlgorítmosCluster (Sistema de computador)RadarSimulação (Computadores)AlgorithmsCluster analysis - Computer programsRadarComputer simulationAnálise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivoComparative analysis of clustering algorithms for object recognition in automotive radar systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisPonta GrossaSantos, Max Mauro DiasSantos, Max Mauro DiasGonçalves, CristhianeAndrade, Mauren Louise Squario Coelho deRamos, Daniel Carvalho dereponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRORIGINALalgoritmosreconhecimentoradarautomotivo.pdfalgoritmosreconhecimentoradarautomotivo.pdfapplication/pdf4571912http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/4/algoritmosreconhecimentoradarautomotivo.pdf2684f0682e160430e8a51f1ae4e16109MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/5/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD55TEXTalgoritmosreconhecimentoradarautomotivo.pdf.txtalgoritmosreconhecimentoradarautomotivo.pdf.txtExtracted texttext/plain180219http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/6/algoritmosreconhecimentoradarautomotivo.pdf.txtaf720b6f0f0c1327f027910edc9f76b8MD56THUMBNAILalgoritmosreconhecimentoradarautomotivo.pdf.jpgalgoritmosreconhecimentoradarautomotivo.pdf.jpgGenerated Thumbnailimage/jpeg1197http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/7/algoritmosreconhecimentoradarautomotivo.pdf.jpg40b1c0c9a41576cd0525e891b21818ceMD571/305032023-02-03 04:07:01.761oai:repositorio.utfpr.edu.br:1/30503TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2023-02-03T06:07:01Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
dc.title.alternative.pt_BR.fl_str_mv Comparative analysis of clustering algorithms for object recognition in automotive radar systems
title Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
spellingShingle Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
Ramos, Daniel Carvalho de
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Algorítmos
Cluster (Sistema de computador)
Radar
Simulação (Computadores)
Algorithms
Cluster analysis - Computer programs
Radar
Computer simulation
title_short Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
title_full Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
title_fullStr Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
title_full_unstemmed Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
title_sort Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo
author Ramos, Daniel Carvalho de
author_facet Ramos, Daniel Carvalho de
author_role author
dc.contributor.advisor1.fl_str_mv Santos, Max Mauro Dias
dc.contributor.referee1.fl_str_mv Santos, Max Mauro Dias
dc.contributor.referee2.fl_str_mv Gonçalves, Cristhiane
dc.contributor.referee3.fl_str_mv Andrade, Mauren Louise Squario Coelho de
dc.contributor.author.fl_str_mv Ramos, Daniel Carvalho de
contributor_str_mv Santos, Max Mauro Dias
Santos, Max Mauro Dias
Gonçalves, Cristhiane
Andrade, Mauren Louise Squario Coelho de
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Algorítmos
Cluster (Sistema de computador)
Radar
Simulação (Computadores)
Algorithms
Cluster analysis - Computer programs
Radar
Computer simulation
dc.subject.por.fl_str_mv Algorítmos
Cluster (Sistema de computador)
Radar
Simulação (Computadores)
Algorithms
Cluster analysis - Computer programs
Radar
Computer simulation
description A grande dificuldade do ramo automotivo é criar um sistema de navegação seguro e confiável para o veículo autônomo, é algo que envolve muitas etapas entre elas, a fusão de sensores e redes de comunicação veicular para o reconhecimento de objetos, uma alternativa para esse desafio é a utilização de algoritmos de clusterização em sistemas de radares automotivos. O algoritmo de clusterização pode ser definido como uma técnica de Machine Learning que envolve o agrupamento de pontos de dados, e funciona da seguinte maneira, dado um conjunto de pontos de dados, podemos usar um algoritmo de agrupamento para classificar cada ponto de dados em um grupo específico. Em teoria, os pontos de dados que estão no mesmo grupo devem ter propriedades e ou recursos semelhantes, enquanto os pontos de dados em grupos diferentes devem ter propriedades e ou recursos altamente diferentes. O agrupamento é um método de aprendizado não supervisionado e é uma técnica comum para análise de dados estatísticos usada em muitos campos. Existem diversos métodos que foram desenvolvidos para a aplicação da clusterização, dentre eles temos dez métodos principais, o Affinity Propagation, Agglomerative Clustering, BIRCH, DBSCAN, KMeans, MiniBatch KMeans, Mean Shift, OPTICS, Spectral Clustering, Mixture of Gaussians. Nesse trabalho, vamos apresentar uma análise comparativa dos algoritmos de clusterização, para verificarmos, qual tem a maior eficiência para ser utilizado em um sistema de radar automotivo para o reconhecimento de objetos, ponto de extrema importância, para a construção de veículos autônomos.
publishDate 2022
dc.date.issued.fl_str_mv 2022-04-29
dc.date.accessioned.fl_str_mv 2023-02-02T14:46:35Z
dc.date.available.fl_str_mv 2023-02-02T14:46:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RAMOS, Daniel Carvalho de. Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo. 2022. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2022.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/30503
identifier_str_mv RAMOS, Daniel Carvalho de. Análise comparativa de algoritmos de clusterização para reconhecimento de objetos em sistemas de radar automotivo. 2022. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2022.
url http://repositorio.utfpr.edu.br/jspui/handle/1/30503
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
dc.publisher.program.fl_str_mv Engenharia Elétrica
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento Acadêmico de Engenharia de Elétrica
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/4/algoritmosreconhecimentoradarautomotivo.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/2/license_rdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/5/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/6/algoritmosreconhecimentoradarautomotivo.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30503/7/algoritmosreconhecimentoradarautomotivo.pdf.jpg
bitstream.checksum.fl_str_mv 2684f0682e160430e8a51f1ae4e16109
4460e5956bc1d1639be9ae6146a50347
b9d82215ab23456fa2d8b49c5df1b95b
af720b6f0f0c1327f027910edc9f76b8
40b1c0c9a41576cd0525e891b21818ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923061928558592